Abstract
Multi-label classification in which each instance may belong to more than one class is a challenging research problem. Recently, a considerable amount of research has been concerned with the development of “good” multi-label learning methods. Despite the extensive research effort, many scientific challenges posed by e.g. curse-of-dimensionality and correlation among labels remain to be addressed. In this paper, we propose a new approach to multi-label classification which combines stacked Kernel Discriminant Analysis using Spectral Regression (SR-KDA) with state-of-the-art instance-based multi-label (ML) learning method. The proposed system is validated on two multi-label databases. The results indicate significant performance gains when compared with the state-of-the art multi-label methods for multi-label classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004)
Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on KDE 18(10), 1338–1351 (2006)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. IEEE Transactions on KDE 23(7), 1079–1089 (2011)
Zhang, M.L., Zhou, Z.H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-label Data. In: Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer (2009)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009)
Cheng, W., Hullermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2-3), 211–225 (2009)
Kittler, J., Tahir, M.A., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recognition Letters 33, 513–523 (2012)
Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. PAMI 18, 607–616 (1996)
Cai, D., He, X., Han, J.: Efficient kernel discriminant analysis via spectral regression. In: Proc. of ICDM, Omaha, NE (October 2007)
Tahir, M.A., Yan, F., Barnard, M., Awais, M., Mikolajczyk, K., Kittler, J.: The university of surrey visual concept detection system at imageCLEF@ICPR: Working notes. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 162–170. Springer, Heidelberg (2010)
Pena, J.M., Zhang, M.L., Robles, V.: Feature selection for multi-label naive bayes classification. Information Sciences 179(19), 3218–3229 (2009)
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)
Furnkranz, J., Hullermeier, E., Mencía, E.L., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning 23(2), 133–153 (2008)
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in NIPS, vol. 14 (2002)
Zhang, Y., Zhi-Hua, Z.: Multi-label dimensionality reduction via dependence maximization. ACM Transactions on Knowledge Discovery from Data 4(3) (2010)
Kai, Y., Shipeng, Y., Volker, T.: Multi-label informed latent semantic indexing. In: Proc. of SIGIR. ACM (2005)
Shuiwang, J., Lei, T., Shipeng, Y., Jieping, Y.: Extracting shared subspace for multi-label classification. In: Proc. of KDD (2008)
Ji, S., Ye, J.: Linear dimensionality reduction for multi-label classification. In: Proc. of IJCAI (2009)
Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press (1990)
Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 2(12), 2385–2404 (2000)
Stewart, G.W.: Matrix Algorithms. Basic Decomposition, vol. I. SIAM (1998)
Wolpert, W.: Stacked generalization. Neural Networks 5(2) (1992)
Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: A java library for multi-label learning. Journal of Machine Learning Research 12, 2411–2414 (2011)
Wang, H., Ding, C., Huang, H.: Multi-label linear discriminant analysis. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 126–139. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tahir, M.A., Bouridane, A., Kittler, J. (2013). Dimensionality Reduction Using Stacked Kernel Discriminant Analysis for Multi-label Classification. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-38067-9_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38066-2
Online ISBN: 978-3-642-38067-9
eBook Packages: Computer ScienceComputer Science (R0)