[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Dimensionality Reduction Using Stacked Kernel Discriminant Analysis for Multi-label Classification

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

Abstract

Multi-label classification in which each instance may belong to more than one class is a challenging research problem. Recently, a considerable amount of research has been concerned with the development of “good” multi-label learning methods. Despite the extensive research effort, many scientific challenges posed by e.g. curse-of-dimensionality and correlation among labels remain to be addressed. In this paper, we propose a new approach to multi-label classification which combines stacked Kernel Discriminant Analysis using Spectral Regression (SR-KDA) with state-of-the-art instance-based multi-label (ML) learning method. The proposed system is validated on two multi-label databases. The results indicate significant performance gains when compared with the state-of-the art multi-label methods for multi-label classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Transactions on KDE 18(10), 1338–1351 (2006)

    Google Scholar 

  3. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. IEEE Transactions on KDE 23(7), 1079–1089 (2011)

    Google Scholar 

  4. Zhang, M.L., Zhou, Z.H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  5. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-label Data. In: Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer (2009)

    Google Scholar 

  6. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Cheng, W., Hullermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2-3), 211–225 (2009)

    Article  Google Scholar 

  8. Kittler, J., Tahir, M.A., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recognition Letters 33, 513–523 (2012)

    Article  Google Scholar 

  9. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. PAMI 18, 607–616 (1996)

    Article  Google Scholar 

  10. Cai, D., He, X., Han, J.: Efficient kernel discriminant analysis via spectral regression. In: Proc. of ICDM, Omaha, NE (October 2007)

    Google Scholar 

  11. Tahir, M.A., Yan, F., Barnard, M., Awais, M., Mikolajczyk, K., Kittler, J.: The university of surrey visual concept detection system at imageCLEF@ICPR: Working notes. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 162–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Pena, J.M., Zhang, M.L., Robles, V.: Feature selection for multi-label naive bayes classification. Information Sciences 179(19), 3218–3229 (2009)

    Article  MATH  Google Scholar 

  13. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  14. Furnkranz, J., Hullermeier, E., Mencía, E.L., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning 23(2), 133–153 (2008)

    Article  Google Scholar 

  15. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in NIPS, vol. 14 (2002)

    Google Scholar 

  16. Zhang, Y., Zhi-Hua, Z.: Multi-label dimensionality reduction via dependence maximization. ACM Transactions on Knowledge Discovery from Data 4(3) (2010)

    Google Scholar 

  17. Kai, Y., Shipeng, Y., Volker, T.: Multi-label informed latent semantic indexing. In: Proc. of SIGIR. ACM (2005)

    Google Scholar 

  18. Shuiwang, J., Lei, T., Shipeng, Y., Jieping, Y.: Extracting shared subspace for multi-label classification. In: Proc. of KDD (2008)

    Google Scholar 

  19. Ji, S., Ye, J.: Linear dimensionality reduction for multi-label classification. In: Proc. of IJCAI (2009)

    Google Scholar 

  20. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press (1990)

    Google Scholar 

  21. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 2(12), 2385–2404 (2000)

    Article  Google Scholar 

  22. Stewart, G.W.: Matrix Algorithms. Basic Decomposition, vol. I. SIAM (1998)

    Google Scholar 

  23. Wolpert, W.: Stacked generalization. Neural Networks 5(2) (1992)

    Google Scholar 

  24. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: A java library for multi-label learning. Journal of Machine Learning Research 12, 2411–2414 (2011)

    MathSciNet  Google Scholar 

  25. Wang, H., Ding, C., Huang, H.: Multi-label linear discriminant analysis. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 126–139. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tahir, M.A., Bouridane, A., Kittler, J. (2013). Dimensionality Reduction Using Stacked Kernel Discriminant Analysis for Multi-label Classification. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics