[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Perspective of Support Vector Clustering with Boundary Patterns

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

  • 2440 Accesses

Abstract

To overcome the pricey computation required by redundant kernel function matrix and poor label performance, in a novel perspective, we present support vector clustering with boundary patterns (BPSVC for abbreviation) for efficiency. For the first phase, the conventional method of estimating the support vector function with the whole data is altered by only essential boundary patterns. Thence, BPSVC only need to solve a much simpler optimization problem. For the second phase of cluster labeling, both convex decomposition and cone cluster labeling method are employed by an ensemble labeling strategies for further improvements on accuracy and efficiency. Both theoretical analysis and experimental results show its superiorities in comparison of the state-of-the-art methods, especially for large-scale data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, C.-D., Lai, J.-H., Huang, D., Zheng, W.-S.: SVStream: A Support Vector Based Algorithm for Clustering Data Streams. IEEE Transactions on Knowledge and Data Engineering, 1–14 (2011) (in press), doi:10.1109/TKDE.2011.263

    Google Scholar 

  2. Wang, C.-D., Lai, J.-H.: Position Regularized Support Vector Domain Description. Pattern Recognition 46(3), 875–884 (2013)

    Article  Google Scholar 

  3. Ping, Y., Tian, Y.J., Zhou, Y.J., Yang, Y.X.: Convex Decomposition based Cluster Labeling Method for Support Vector Clustering. Journal of Computer Science and Technology 27(2), 428–442 (2012)

    Article  MathSciNet  Google Scholar 

  4. Ping, Y., Zhou, Y.J., Yang, Y.X.: A Novel Scheme for Acclereating Support Vector Clustering. Computing and Infomatics 31(6), 613–638 (2012)

    Google Scholar 

  5. Wang, C.-D., Lai, J.-H., Huang, D., Zheng, W.-S.: SVStream: A Support Vector Based Algorithm for Clustering Data Streams. IEEE Transactions on Knowledge and Data Engineering, 1–14 (2012), doi:10.1109/TKDE.2011.263

    Google Scholar 

  6. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley (2006)

    Google Scholar 

  7. Xu, R., Wunsch, D.C.: Clustering. A John Wiley&Sons (2008)

    Google Scholar 

  8. Strehl, A., Ghosh, J.: Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions. Journal of Machine Learning Research (3), 583–617 (2002)

    Google Scholar 

  9. Lee, S.-H., Daniels, K.M.: Cone Cluster Labeling for Support Vector Clustering. In: Proceedings of 6th SIAM Conference on Data Mining, pp. 484–488. SIAM, Bethesda (2006)

    Google Scholar 

  10. Yang, J.H., Estivill-Castro, V., Chalup, S.K.: Support Vector Clustering Through Proximity Graph Modelling. In: Proceedings of 9th International Conference on Neural Information Processing (ICONIP 2002), pp. 898–903. Orchid Country Club, Singapore (2002)

    Chapter  Google Scholar 

  11. Estivill-Castro, V., Lee, I., Murray, A.T.: Criteria on Proximity Graphs for Boundary Extraction and Spatial Clustering. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 348–357. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Puma-Villanueva, W.J., Bezerra, G.B., Lima, C.A.M., Zuben, F.J.V.: Improving Support Vector Clustering with Ensembles. In: Proceedings of International Joint Conference on Neural Networks, Montreal, Quebec, Canada, pp. 13–15 (2005)

    Google Scholar 

  13. Tax, D.M.J., Duin, P.R.W.: Support Vector Domain Description. Pattern Recognition Letters 20(11-13), 1191–1199 (1999)

    Article  Google Scholar 

  14. Jung, K.-H., Kim, N., Lee, J.: Dynamic Pattern Denoising Method using Multi-basin System with Kernels. Pattern Recognition 44(8), 1698–1707 (2011)

    Article  MATH  Google Scholar 

  15. Jung, K.-H., Lee, D., Lee, J.: Fast Support-based Clustering Method for Large-scale Problems. Pattern Recognition 43(5), 1975–1983 (2010)

    Article  MATH  Google Scholar 

  16. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.N.: Support Vector Clustering. Journal of Machine Learning Research (2), 125–137 (2001)

    Google Scholar 

  17. Guo, C.H., Li, F.: An Improved Algorithm for Support Vector Clustering based on Maximum Entropy Principle and Kernel Matrix. Expert Systems with Applications 38(7), 8138–8143 (2011)

    Article  Google Scholar 

  18. Ling, P., Zhou, C.-G., Zhou, X.: Improved Support Vector Clustering. Engineering Applications of Artificial Intelligence 23(4), 552–559 (2010)

    Article  Google Scholar 

  19. Lee, J., Lee, D.: An Improved Cluster Labeling Method for Support Vector Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 461–464 (2005)

    Article  Google Scholar 

  20. Lee, J., Lee, D.: Dynamic Characterization of Cluster Structures for Robust and Inductive Support Vector Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1869–1874 (2006)

    Article  Google Scholar 

  21. Lee, J., Lee, D.: Equilibrium-based Support Vector Machine for Semisupervised Classification. IEEE Transactions on Neural Networks 18(2), 578–583 (2007)

    Article  Google Scholar 

  22. Lee, J., Jung, K.-H., Lee, D.: Constructing Sparse Kernel Machines Using Attractors. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(4), 721–729 (2009)

    Google Scholar 

  23. Li, Y.H., Maguire, L.: Selecting Critical Patterns Based on Local Geometrical and Statistical Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(6), 1189–1201 (2011)

    Article  Google Scholar 

  24. Hubert, P.A.L.: Compariring partitions. Journal of Classification 2, 193–218 (1985)

    Article  Google Scholar 

  25. Veenman, C.J., Reinders, M.J.T., Backer, E.: A Maximum Variance Cluster Algorithm 24(9), 1273–1280 (2002)

    Google Scholar 

  26. Frank, A., Asuncion, A.: UCI Machine Learning Repository, http://archive.ics.uci.edu/ml

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ping, Y., Li, H., Zhang, Y., Zhang, Z. (2013). A New Perspective of Support Vector Clustering with Boundary Patterns. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics