[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Single Classifier Based Multiple Classifications

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

  • 2436 Accesses

Abstract

In this paper, a Single Classifier-based Multiple Classification Scheme (SMCS) is proposed as an alternative multiple classification scheme. The SMCS uses only a single classifier to generate multiple classifications for a given test data point. Because of the presence of multiple classifications, classification combination schemes, such as majority voting, can be applied, and so the mechanism may improve the recognition rate in a manner similar to that of Multiple Classifier Systems (MCS). The experimental results confirm the validity of the proposed SMCS as applicable to many classification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bottou, L., Vapnik, V.N.: Local Learning Algorithms. Neural Computation 4(6), 888–900 (1992)

    Article  Google Scholar 

  2. Decoste, D., Schoelkopf, B.: Training invariant support vector machines. Machine Learning 46(1), 161–190 (2002)

    Article  MATH  Google Scholar 

  3. Duin, R.P., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D., Verzakov, S.: PR-Tools4.1, a matlab toolbox for pattern recognition (2007), http://prtools.org

  4. Ko, A.H.R., Sabourin, R., de Souza Britto Jr., A.: Combining diversity and classification accuracy for ensemble selection in random subspaces. In: Proceedings of the International Joint Conference on Neural Networks, pp. 2144–2151 (2006)

    Google Scholar 

  5. Ko, A.H.R., Sabourin, R., de Souza Britto Jr., A.: Compound Diversity Functions for Ensemble Selection. International Journal of Pattern Recognition and Artificial Intelligence 23(4), 659–686 (2009)

    Article  Google Scholar 

  6. Ko, A.H.R., Cavalin, P., Sabourin, R., de Souza Britto Jr., A.: Leave-One-Out-Training and Leave-One-Out-Testing Hidden Markov Models for a Handwritten Numeral Recognizer: the Implication of a Single Classifier and Multiple Classifications. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12), 2168–2178 (2009)

    Article  Google Scholar 

  7. Ko, A.H.R., Sabourin, R., de Souza Britto Jr., A.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recognition 41(5), 1718–1731 (2008)

    Article  MATH  Google Scholar 

  8. Kuncheva, L.I., Skurichina, M., Duin, R.P.W.: An Experimental Study on Diversity for Bagging and Boosting with Linear Classifiers. International Journal of Information Fusion 3(2), 245–258 (2002)

    Article  Google Scholar 

  9. Kuncheva, L.I., Rodriguez, J.J.: Classifier ensembles with a random linear oracle. IEEE Transactions on Knowledge and Data Engineering 19(4), 500–508 (2007)

    Article  Google Scholar 

  10. Poggio, T., Vetter, T.: Recognition and structure from one 2D model view: Observations on prototypes, object classes and symmetries. A.I. Memo No. 1347, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (1992)

    Google Scholar 

  11. Polikar, R., DePasquale, J., Mohammed, H.S., Brown, G., Kuncheva, L.I.: Learn++ MF: A random subspace approach for the missing feature problem. Pattern Recognition (43), 3817–3832 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ko, A.HR., Sabourin, R. (2013). Single Classifier Based Multiple Classifications. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics