Abstract
This work addresses the problem of fast, online segmentation of moving objects in video. We pose this as a discriminative online semi-supervised appearance learning task, where supervising labels are autonomously generated by a motion segmentation algorithm. The computational complexity of the approach is significantly reduced by performing learning and classification on oversegmented image regions (superpixels), rather than per pixel. In addition, we further exploit the sparse trajectories from the motion segmentation to obtain a simple model that encodes the spatial properties and location of objects at each frame. Fusing these complementary cues produces good object segmentations at very low computational cost. In contrast to previous work, the proposed approach (1) performs segmentation on-the-fly (allowing for applications where data arrives sequentially), (2) has no prior model of object types or ‘objectness’, and (3) operates at significantly reduced computational cost. The approach and its ability to learn, disambiguate and segment the moving objects in the scene is evaluated on a number of benchmark video sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sun, J., Zhang, W., Tang, X., Shum, H.-Y.: Background Cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)
Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live video. In: CVPR, vol. 1, pp. 53–60 (2006)
Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and subtraction of dynamic scenes. In: ICCV, vol. 2, pp. 1305–1312 (2003)
Han, M., Xu, W., Gong, Y.: Video object segmentation by motion-based sequential feature clustering. In: ACM Multimedia, pp. 773–782 (2006)
Yin, P., Criminisi, A., Winn, J., Essa, M.: Tree-based classifiers for bilayer video segmentation. In: CVPR, pp. 1–8 (2007)
Zhang, G., Jia, J., Xiong, W., Wong, T.-T., Heng, P.-A., Bao, H.: Moving object extraction with a hand-held camera. In: ICCV, pp. 1–8 (2007)
Liu, F., Gleicher, M.: Learning color and locality cues for moving object detection and segmentation. In: CVPR, pp. 320–327 (2009)
Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV (2011)
Bugeau, A., Perez, P.: Detection and segmentation of moving objects in highly dynamic scenes. In: CVPR (2007)
Brox, T., Malik, J.: Object Segmentation by Long Term Analysis of Point Trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)
Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE PAMI 33, 500–513 (2011)
Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: ICCV (2011)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE PAMI 33, 898–916 (2011)
Godec, M., Roth, P., Bischof, H.: Hough-based tracking of non-rigid objects. In: ICCV, pp. 81–88 (2011)
Lu, L., Hager, G.D.: A nonparametric treatment on location/segmentation based visual tracking. In: CVPR (2007)
Zografos, V., Nordberg, K.: Fast and accurate motion segmentation using linear combination of views. In: BMVC, pp. 12.1–12.11 (2011)
Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593–600 (1994)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Int. Joint Conference on A.I., vol. 2, pp. 674–679 (1981)
Hwang, J.N., Lay, S.R., Lippman, A.: Nonparametric multivariate density estimation: A comparative study. IEEE Trans. Signal Processing 42, 2795–2810 (1994)
Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. Annals of Statistics (2010)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Ssstrunk, S.: SLIC Superpixels Compared to State-of-the-art Superpixel Methods. IEEE PAMI (2012)
Lenz, R., Bui, H.T., Takase, K.: A group theoretical toolbox for color image operators. In: ICIP, vol. 3, pp. 557–560 (2005)
Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line Random Forests. In: ICCV Workshops, pp. 1393–1400. IEEE (2009)
Ng, V., Cardie, C.: Weakly supervised natural language learning without redundant views. In: NAACL, vol. 1, pp. 94–101 (2003)
Tsai, D., Flagg, M., Rehg, J.M.: Motion coherent tracking with multi-label mrf optimization. In: BMVC (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ellis, L., Zografos, V. (2013). Online Learning for Fast Segmentation of Moving Objects. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-37444-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37443-2
Online ISBN: 978-3-642-37444-9
eBook Packages: Computer ScienceComputer Science (R0)