[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Online Learning for Fast Segmentation of Moving Objects

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

Abstract

This work addresses the problem of fast, online segmentation of moving objects in video. We pose this as a discriminative online semi-supervised appearance learning task, where supervising labels are autonomously generated by a motion segmentation algorithm. The computational complexity of the approach is significantly reduced by performing learning and classification on oversegmented image regions (superpixels), rather than per pixel. In addition, we further exploit the sparse trajectories from the motion segmentation to obtain a simple model that encodes the spatial properties and location of objects at each frame. Fusing these complementary cues produces good object segmentations at very low computational cost. In contrast to previous work, the proposed approach (1) performs segmentation on-the-fly (allowing for applications where data arrives sequentially), (2) has no prior model of object types or ‘objectness’, and (3) operates at significantly reduced computational cost. The approach and its ability to learn, disambiguate and segment the moving objects in the scene is evaluated on a number of benchmark video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sun, J., Zhang, W., Tang, X., Shum, H.-Y.: Background Cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live video. In: CVPR, vol. 1, pp. 53–60 (2006)

    Google Scholar 

  3. Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and subtraction of dynamic scenes. In: ICCV, vol. 2, pp. 1305–1312 (2003)

    Google Scholar 

  4. Han, M., Xu, W., Gong, Y.: Video object segmentation by motion-based sequential feature clustering. In: ACM Multimedia, pp. 773–782 (2006)

    Google Scholar 

  5. Yin, P., Criminisi, A., Winn, J., Essa, M.: Tree-based classifiers for bilayer video segmentation. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  6. Zhang, G., Jia, J., Xiong, W., Wong, T.-T., Heng, P.-A., Bao, H.: Moving object extraction with a hand-held camera. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  7. Liu, F., Gleicher, M.: Learning color and locality cues for moving object detection and segmentation. In: CVPR, pp. 320–327 (2009)

    Google Scholar 

  8. Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV (2011)

    Google Scholar 

  9. Bugeau, A., Perez, P.: Detection and segmentation of moving objects in highly dynamic scenes. In: CVPR (2007)

    Google Scholar 

  10. Brox, T., Malik, J.: Object Segmentation by Long Term Analysis of Point Trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE PAMI 33, 500–513 (2011)

    Article  Google Scholar 

  12. Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: ICCV (2011)

    Google Scholar 

  13. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE PAMI 33, 898–916 (2011)

    Article  Google Scholar 

  14. Godec, M., Roth, P., Bischof, H.: Hough-based tracking of non-rigid objects. In: ICCV, pp. 81–88 (2011)

    Google Scholar 

  15. Lu, L., Hager, G.D.: A nonparametric treatment on location/segmentation based visual tracking. In: CVPR (2007)

    Google Scholar 

  16. Zografos, V., Nordberg, K.: Fast and accurate motion segmentation using linear combination of views. In: BMVC, pp. 12.1–12.11 (2011)

    Google Scholar 

  17. Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593–600 (1994)

    Google Scholar 

  18. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Int. Joint Conference on A.I., vol. 2, pp. 674–679 (1981)

    Google Scholar 

  19. Hwang, J.N., Lay, S.R., Lippman, A.: Nonparametric multivariate density estimation: A comparative study. IEEE Trans. Signal Processing 42, 2795–2810 (1994)

    Article  Google Scholar 

  20. Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. Annals of Statistics (2010)

    Google Scholar 

  21. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Ssstrunk, S.: SLIC Superpixels Compared to State-of-the-art Superpixel Methods. IEEE PAMI (2012)

    Google Scholar 

  22. Lenz, R., Bui, H.T., Takase, K.: A group theoretical toolbox for color image operators. In: ICIP, vol. 3, pp. 557–560 (2005)

    Google Scholar 

  23. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line Random Forests. In: ICCV Workshops, pp. 1393–1400. IEEE (2009)

    Google Scholar 

  24. Ng, V., Cardie, C.: Weakly supervised natural language learning without redundant views. In: NAACL, vol. 1, pp. 94–101 (2003)

    Google Scholar 

  25. Tsai, D., Flagg, M., Rehg, J.M.: Motion coherent tracking with multi-label mrf optimization. In: BMVC (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ellis, L., Zografos, V. (2013). Online Learning for Fast Segmentation of Moving Objects. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics