[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Class-Based Language Models for Chinese-English Parallel Corpus

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7817))

  • 2917 Accesses

Abstract

This paper addresses using novel class-based language models on parallel corpora, focusing specifically on English and Chinese languages. We find that the perplexity of Chinese is generally much higher than English and discuss the possible reasons. We demonstrate the relative effectiveness of using class-based models over the modified Kneser-Ney trigram model for our task. We also introduce a rare events clustering and a polynomial discounting mechanism, which is shown to improve results. Our experimental results on parallel corpora indicate that the improvement due to classes are similar for English and Chinese. This suggests that class-based language models should be used for both languages.

Junfei Guo acknowledge support by Chinese Scholarship Council during the first author’s study in University of Stuttgart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Koehn, P.: Statistical Machine Translation, 1st edn. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  3. Schütze, H.: Integrating history-length interpolation and classes in language modeling. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 1516–1525. Association for Computational Linguistics, Portland (2011)

    Google Scholar 

  4. Gao, J., Goodman, J., Li, M., Lee, K.F.: Toward a unified approach to statistical language modeling for chinese, vol. 1(1), pp. 3–33 (March 2002)

    Google Scholar 

  5. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  6. Chang, P.C., Galley, M., Manning, C.D.: Optimizing chinese word segmentation for machine translation performance. In: Proceedings of the Third Workshop on Statistical Machine Translation, StatMT 2008, pp. 224–232. Association for Computational Linguistics, Stroudsburg (2008)

    Chapter  Google Scholar 

  7. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language modeling. In: Proceedings of the 34th Annual Meeting on Association for Computational Linguistics, ACL 1996, pp. 310–318. Association for Computational Linguistics, Stroudsburg (1996)

    Chapter  Google Scholar 

  8. Brown, P.F., deSouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based n-gram models of natural language. Computational Linguistics 18, 467–479 (1992)

    Google Scholar 

  9. Dupont, P., Rosenfeld, R.: Lattice based language models. Technical report (1997)

    Google Scholar 

  10. Eisele, A., Chen, Y.: Multiun: A multilingual corpus from united nation documents. In: Chair, N.C.C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010). European Language Resources Association (ELRA), Valletta (2010)

    Google Scholar 

  11. Stolcke, A.: Srilm - an extensible language modeling toolkit. In: Hansen, J.H.L., Pellom, B.L. (eds.) INTERSPEECH. ISCA (2002)

    Google Scholar 

  12. Luo, X., Roukos, S.: An iterative algorithm to build chinese language models. In: Proceedings of the 34th Annual Meeting on Association for Computational Linguistics, ACL 1996, pp. 139–143. Association for Computational Linguistics, Stroudsburg (1996)

    Chapter  Google Scholar 

  13. Gao, J., Goodman, J.T., Miao, J.: The Use of Clustering Techniques for Language Modeling Application to Asian Languages

    Google Scholar 

  14. Luo, J., Lamel, L., Gauvain, J.L.: Modeling characters versuswords for mandarin speech recognition. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pp. 4325–4328. IEEE Computer Society, Washington, DC (2009)

    Chapter  Google Scholar 

  15. Schütze, H.: Distributional part-of-speech tagging. In: Proceedings of the Seventh Conference on European Chapter of the Association for Computational Linguistics, EACL 1995, pp. 141–148. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Chapter  Google Scholar 

  16. Yokoyama, T., Shinozaki, T., Iwano, K., Furui, S.: Unsupervised class-based language model adaptation for spontaneous speech recognition. In: Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), vol. 1, pp. I-236–I-239 (April 2003)

    Google Scholar 

  17. Momtazi, S., Klakow, D.: A word clustering approach for language model-based sentence retrieval in question answering systems. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 1911–1914. ACM, New York (2009)

    Chapter  Google Scholar 

  18. Maltese, G., Bravetti, P., Crépy, H., Grainger, B.J., Herzog, M., Palou, F.: Combining word- and class-based language models: a comparative study in several languages using automatic and manual word-clustering techniques. In: Dalsgaard, P., Lindberg, B., Benner, H., Tan, Z.H. (eds.) INTERSPEECH, pp. 21–24. ISCA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, J., Liu, J., Walsh, M., Schmid, H. (2013). Class-Based Language Models for Chinese-English Parallel Corpus. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2013. Lecture Notes in Computer Science, vol 7817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37256-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37256-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37255-1

  • Online ISBN: 978-3-642-37256-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics