[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Examining the Diversity Property of Semantic Similarity Based Crossover

  • Conference paper
Genetic Programming (EuroGP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7831))

Included in the following conference series:

Abstract

Population diversity has long been seen as a crucial factor for the efficiency of Evolutionary Algorithms in general, and Genetic Programming (GP) in particular. This paper experimentally investigates the diversity property of a recently proposed crossover, Semantic Similarity based Crossover (SSC). The results show that while SSC helps to improve locality, it leads to the loss of diversity of the population. This could be the reason that sometimes SSC fails in achieving superior performance when compared to standard subtree crossover. Consequently, we introduce an approach to maintain the population diversity by combining SSC with a multi-population approach. The experimental results show that this combination maintains better population diversity, leading to further improvement in GP performance. Further SSC parameters tuning to promote diversity gains even better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 111–116. IEEE Press (2008)

    Google Scholar 

  2. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)

    Article  Google Scholar 

  3. Fernandez, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation genetic programming. Genetic Programming and Evolvable Machines 4(1), 21–51 (2003)

    Article  MATH  Google Scholar 

  4. Gustafson, S., Burke, E.K., Kendall, G.: Sampling of Unique Structures and Behaviours in Genetic Programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 279–288. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Hoai, N.X., McKay, R.I., Essam, D.: Representation and structural difficulty in genetic programming. IEEE Transaction on Evolutionary Computation 10(2), 157–166 (2006)

    Article  Google Scholar 

  6. Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, MA (1992)

    MATH  Google Scholar 

  7. Langdon, W.B.: Genetic Programming and Data Structures: Genetic Programming + Data Structure = Automatic Programming! Kluwer Academic, Boston (1998)

    Book  Google Scholar 

  8. Looks, M.: On the behavioral diversity of random programs. In: GECCO 2007: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, July 7-11, vol. 2, pp. 1636–1642. ACM Press (2007)

    Google Scholar 

  9. McKay, B.: An investigation of fitness sharing in genetic programming. The Australian Journal of Intelligent Information Processing Systems 7(1/2), 43–51 (2001)

    Google Scholar 

  10. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Galvan-Lopez, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genetic Programming and Evolvable Machines, 91–119 (2011)

    Google Scholar 

  11. O’Reilly, U.M., Oppacher, F.: Program Search with a Hierarchical Variable Length Representation: Genetic Programming, Simulated Annealing and Hill Climbing. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 397–406. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Poli, R., Langdon, W.B.: On the search properties of different crossover operators in genetic programming. In: Genetic Programming: Proceedings of the Third Annual Conference, pp. 293–301. Morgan Kaufmann (1998)

    Google Scholar 

  13. Rosca, J.P.: Entropy-driven adaptive representation. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, July 9, pp. 23–32 (1995)

    Google Scholar 

  14. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn. Springer (2006)

    Google Scholar 

  15. Tenese, R.: Parallel genetic algorithms for a hypercube. In: Greenstette, J.J. (ed.) Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp. 177–183. Lawrence Erlbaum

    Google Scholar 

  16. Tomassini, M., Vanneschi, L., Fernández, F., Galeano, G.: A Study of Diversity in Multipopulation Genetic Programming. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 243–255. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 292–302. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, T.A., Nguyen, Q.U., Nguyen, X.H., O’Neill, M. (2013). Examining the Diversity Property of Semantic Similarity Based Crossover. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds) Genetic Programming. EuroGP 2013. Lecture Notes in Computer Science, vol 7831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37207-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37207-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37206-3

  • Online ISBN: 978-3-642-37207-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics