[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Repair Methods for Box Constraints Revisited

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7835))

Included in the following conference series:

Abstract

Box constraints are possibly the simplest kind of constraints one could think of in real-valued optimization, because it is trivial to detect and repair any violation of them. But so far, the topic has only received marginal attention in the literature compared to the more general formulations, although it is a frequent use case. It is experimentally shown here that different repair methods can have a huge impact on the optimizer’s performance when using the covariance matrix self-adaptation evolution strategy (CMSA-ES). Also, two novel repair methods, specially designed for this algorithm, sometimes outperform the traditional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arabas, J., Szczepankiewicz, A., Wroniak, T.: Experimental Comparison of Methods to Handle Boundary Constraints in Differential Evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 411–420. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore (May 2005), http://www.ntu.edu.sg/home/EPNSugan

  4. Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM Journal on Optimization 9(4), 1082–1099 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm optimizers and other search algorithms. IEEE Transactions on Evolutionary Computation 11(5), 561–578 (2007)

    Article  Google Scholar 

  6. Hansen, N., Niederberger, A.S., Guzzella, L., Koumoutsakos, P.: A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Transactions on Evolutionary Computation 13(1), 180–197 (2009)

    Article  Google Scholar 

  7. Purchla, M., Malanowski, M., Terlecki, P., Arabas, J.: Experimental comparison of repair methods for box constraints. In: Proceedings of the 7th National Conference on Evolutionary Computation and Global Optimization. Warsaw University of Technology Publishing House (2004)

    Google Scholar 

  8. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    Google Scholar 

  9. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. The Computer Journal 6(2), 163–168 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)

    Google Scholar 

  11. Michalewicz, Z., Nazhiyath, G.: Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In: IEEE International Conference on Evolutionary Computation, pp. 647–651 (1995)

    Google Scholar 

  12. Beyer, H.-G., Sendhoff, B.: Covariance Matrix Adaptation Revisited – The CMSA Evolution Strategy –. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA (March 2010)

    Google Scholar 

  14. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evolutionary Computation 7(1), 19–44 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wessing, S. (2013). Repair Methods for Box Constraints Revisited. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37192-9_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37191-2

  • Online ISBN: 978-3-642-37192-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics