Abstract
Box constraints are possibly the simplest kind of constraints one could think of in real-valued optimization, because it is trivial to detect and repair any violation of them. But so far, the topic has only received marginal attention in the literature compared to the more general formulations, although it is a frequent use case. It is experimentally shown here that different repair methods can have a huge impact on the optimizer’s performance when using the covariance matrix self-adaptation evolution strategy (CMSA-ES). Also, two novel repair methods, specially designed for this algorithm, sometimes outperform the traditional ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)
Arabas, J., Szczepankiewicz, A., Wroniak, T.: Experimental Comparison of Methods to Handle Boundary Constraints in Differential Evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 411–420. Springer, Heidelberg (2010)
Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore (May 2005), http://www.ntu.edu.sg/home/EPNSugan
Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM Journal on Optimization 9(4), 1082–1099 (1999)
Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm optimizers and other search algorithms. IEEE Transactions on Evolutionary Computation 11(5), 561–578 (2007)
Hansen, N., Niederberger, A.S., Guzzella, L., Koumoutsakos, P.: A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Transactions on Evolutionary Computation 13(1), 180–197 (2009)
Purchla, M., Malanowski, M., Terlecki, P., Arabas, J.: Experimental comparison of repair methods for box constraints. In: Proceedings of the 7th National Conference on Evolutionary Computation and Global Optimization. Warsaw University of Technology Publishing House (2004)
Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)
Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. The Computer Journal 6(2), 163–168 (1963)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)
Michalewicz, Z., Nazhiyath, G.: Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In: IEEE International Conference on Evolutionary Computation, pp. 647–651 (1995)
Beyer, H.-G., Sendhoff, B.: Covariance Matrix Adaptation Revisited – The CMSA Evolution Strategy –. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008)
Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA (March 2010)
Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evolutionary Computation 7(1), 19–44 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wessing, S. (2013). Repair Methods for Box Constraints Revisited. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-37192-9_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37191-2
Online ISBN: 978-3-642-37192-9
eBook Packages: Computer ScienceComputer Science (R0)