[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cell-Based Metrics Improve the Detection of Gene-Gene Interactions Using Multifactor Dimensionality Reduction

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2013)

Abstract

Multifactor Dimensionality Reduction (MDR) is a widely-used data-mining method for detecting and interpreting epistatic effects that do not display significant main effects. MDR produces a reduced-dimensionality representation of a dataset which classifies multi-locus genotypes into either high- or low-risk groups. The weighted fraction of cases and controls correctly labelled by this classification, the balanced accuracy, is typically used as a metric to select the best or most-fit model. We propose two new metrics for MDR to use in evaluating models, Variance and Fisher, and compare those metrics to two previously-used MDR metrics, Balanced Accuracy and Normalized Mutual Information. We find that the proposed metrics consistently outperform the existing metrics across a variety of scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bush, W.S., Edwards, T., Dudek, S., McKinney, B., Ritchie, M.: Alternative contingency table measures improve the power and detection of multifactor dimensionality reduction. BMC Bioinformatics 9, 238 (2008)

    Article  Google Scholar 

  2. Collins, R.L., Hu, T., Wejse, C., Sirugo, G., Williams, S., Moore, J.: Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis (2012) (manuscript submitted for publication)

    Google Scholar 

  3. Cordell, H.: Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum. Mol. Genet. 11, 2463–2468 (2002)

    Article  Google Scholar 

  4. Fisher, R.: Statistical methods for research workers. Genesis Publishing Pvt. Ltd. (1925)

    Google Scholar 

  5. Hahn, L., Moore, J.: Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In Silico Biol. 4, 0016 (2004)

    Google Scholar 

  6. Hahn, L., Ritchie, M., Moore, J.: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376–382 (2003)

    Article  Google Scholar 

  7. Moore, J.H.: Computational analysis of gene-gene interactions in common human diseases using multifactor dimensionality reduction. Expert Rev. Mol. Diagn. 4, 795–803 (2004)

    Article  Google Scholar 

  8. Moore, J.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered. 56, 73–82 (2003)

    Article  Google Scholar 

  9. Moore, J.: A global view of epistasis. Nat. Genet. 37, 13–14 (2005)

    Article  Google Scholar 

  10. Moore, J.: Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics. In: Zhu, X., Davidson, I. (eds.) Knowledge Discovery and Data Mining: Challenges and Realities with Real World Data, pp. 17–30. IGI Press, Hershey (2007)

    Chapter  Google Scholar 

  11. Moore, J., Gilbert, J., Tsai, C., Chiang, F., Holden, W., Barney, N., White, B.: A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. 241, 252–261 (2006)

    Article  MathSciNet  Google Scholar 

  12. Moore, J., Williams, S.: New strategies for identifying gene-gene interactions in hypertension. Ann. Med. 34, 88–95 (2002)

    Article  Google Scholar 

  13. Moore, J., Williams, S.: Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. BioEssays 27, 637–646 (2005)

    Article  Google Scholar 

  14. Olesen, R., Wejse, C., Velez, D., Bisseye, C., Sodemann, M., Aaby, P., Rabna, P., Worwui, A., Chapman, H., Diatta, M., Adegbola, R., Hill, P., Stergaard, L., Williams, S., Sirugo, G.: Dc-sign (cd209), pentraxin 3 and vitamin d receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes and Immunity 8(suppl. 6), 456–467 (2007)

    Article  Google Scholar 

  15. Rea, T., Brown, C., Sing, C.: Complex adaptive system models and the genetic analysis of plasma hdl-cholesterol concentration. Perspect. Biol. Med. 49, 490–503 (2006)

    Article  Google Scholar 

  16. Risch, N., Merikangas, K.: The future of genetic studies of complex human disease. Science 273, 1516–1517 (1996)

    Article  Google Scholar 

  17. Ritchie, M., Hahn, L., Moore, J.: Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet. Epidemiol. 24, 150–157 (2003)

    Article  Google Scholar 

  18. Ritchie, M., Hahn, L., Roodi, N., Bailey, L., Dupont, W., Parl, F., Moore, J.: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147 (2001)

    Article  Google Scholar 

  19. Sing, C., Stengard, J., Kardia, S.: Genes, environment, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 23, 1190–1196 (2003)

    Article  Google Scholar 

  20. Templeton, A.: Epistasis and complex traits. In: Wade, M., Brodie III, B., Wolf, J. (eds.) Epistasis and Evolutionary Process. Oxford University Press, New York (2000)

    Google Scholar 

  21. Thornton-Wells, T., Moore, J., Haines, J.: Genetics, statistics, and human disease: analytical retooling for complexity. Trends Genet. 20, 640–647 (2004)

    Article  Google Scholar 

  22. Urbanowicz, R., Kiralis, J., Fisher, J., Moore, J.: Predicting the difficulty of pure, strict, epistatic models: metrics for simulated model selection. BioData Mining 5(1), 15 (2012)

    Article  Google Scholar 

  23. Urbanowicz, R., Kiralis, J., Sinnott-Armstrong, N., Heberling, T., Fisher, J., Moore, J.: Gametes: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Mining 5(1), 16 (2012)

    Article  Google Scholar 

  24. Velez, D., White, B., Motsinger, A., Bush, W., Ritchie, M., Williams, S., Moore, J.: A balanced accuracy metric for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet. Epidemiol. 31, 306–315 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fisher, J.M., Andrews, P., Kiralis, J., Sinnott-Armstrong, N.A., Moore, J.H. (2013). Cell-Based Metrics Improve the Detection of Gene-Gene Interactions Using Multifactor Dimensionality Reduction. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2013. Lecture Notes in Computer Science, vol 7833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37189-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37189-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37188-2

  • Online ISBN: 978-3-642-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics