[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

Regional wall motion and infarct scoring of MR images are routine clinical tools to grade performance and scarring in the heart. The aim of this paper is to provide a framework for automatic scoring to alert the diagnostician to potential regions of abnormality. We investigated different shape and motion configurations of a finite-element cardiac atlas of the left ventricle. Two patient populations were used: 300 asymptomatic volunteers and 105 patients with myocardial infarction, both randomly selected from the Cardiac Atlas Project database. Support vector machines were employed to estimate the boundaries between the asymptomatic control and patient groups for each of 16 standard anatomical regions in the heart. Ground truth visual wall motion scores from standard cines and infarct scoring from late enhancement were provided by experienced observers. From all configurations, end-systolic shape best predicted wall motion abnormalities (global accuracy 78%, positive predictive value 85%, specificity 91%, sensitivity 60%) and infarct scoring (74%, 72%, 91%, 44%). In conclusion, computer assisted wall motion and infarct scoring has the potential to provide robust identification of those segments requiring further clinical attention; in particular, the high specificity and relatively low sensitivity could help avoid unnecessary late gadolinium rescanning of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altman, D., Bland, J.: Diagnostic tests 2: Predictive values. BMJ: British Medical Journal 309(6947), 102 (1994)

    Article  Google Scholar 

  2. Bild, D.E., Bluemke, D.A., Burke, G.L., et al.: Multi-ethnic study of atherosclerosis: objectives and design. Am. J. Epidemiol. 156(9), 871–881 (2002)

    Article  Google Scholar 

  3. Canty Jr., J.M., Fallavollita, J.A.: Hibernating myocardium. Journal of Nuclear Cardiology 12(1), 104–119 (2005)

    Article  Google Scholar 

  4. Cerqueira, M.D., Weissman, N.J., Dilsizian, V., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105(4), 539–542 (2002)

    Article  Google Scholar 

  5. Duchateau, N., De Craene, M., Piella, G., Silva, E., Doltra, A., Sitges, M., Bijnens, B., Frangi, A.: A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Medical Image Analysis (2011)

    Google Scholar 

  6. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

  7. Hoffmann, R., von Bardeleben, S., Kasprzak, J.D., et al.: Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging, and unenhanced and contrast-enhanced echocardiography: A multicenter comparison of methods. J. Am. Coll. Cardiol. 47(1), 121–128 (2006)

    Article  Google Scholar 

  8. Kadish, A.H., Bello, D., Finn, J.P., et al.: Rationale and design for the Defibrillators to Reduce Risk by Magnetic Resonance Imaging Evaluation (DETERMINE) trial. J. Cardiovasc. Electrophysiol. 20(9), 982–987 (2009)

    Article  Google Scholar 

  9. Lekadir, K., Keenan, N.G., Pennell, D.J., Yang, G.Z.: An inter-landmark approach to 4-D shape extraction and interpretation: application to myocardial motion assessment in MRI. IEEE Trans. Med. Imaging 30(1), 52–68 (2011)

    Article  Google Scholar 

  10. Ortiz-Pérez, J.T., Rodríguez, J., Meyers, S.N., et al.: Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc. Imaging 1(3), 282–293 (2008)

    Article  Google Scholar 

  11. Punithakumar, K., Ben Ayed, I., Ross, I.G., et al.: Detection of left ventricular motion abnormality via information measures and bayesian filtering. IEEE Trans. Inf. Technol. Biomed. 14(4), 1106–1113 (2010)

    Article  Google Scholar 

  12. Reddy, G.P., Pujadas, S., Ordovas, K.G., Higgins, C.B.: MR imaging of ischemic heart disease. Magn. Reson. Imaging Clin. N. Am. 16(2), 201–212 (2008)

    Article  Google Scholar 

  13. Redheuil, A.B., Kachenoura, N., Laporte, R., et al.: Interobserver variability in assessing segmental function can be reduced by combining visual analysis of CMR cine sequences with corresponding parametric images of myocardial contraction. J. Cardiovasc. Magn. Reson. 9(6), 863–872 (2007)

    Article  Google Scholar 

  14. Suinesiaputra, A., Frangi, A.F., Kaandorp, T.A.M., et al.: Automated regional wall motion abnormality detection by combining rest and stress cardiac MRI: Correlation with contrast-enhanced MRI. J. Magn. Reson. Imaging 34(2), 270–278 (2011)

    Article  Google Scholar 

  15. Suinesiaputra, A., Frangi, A.F., Kaandorp, T.A.M., et al.: Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans. Med. Imaging 28(4), 595–607 (2009)

    Article  Google Scholar 

  16. Vapnik, V.: The nature of statistical learning theory. Springer (2000)

    Google Scholar 

  17. White, H., Norris, R., Brown, M., Brandt, P., Whitlock, R., Wild, C.: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1), 44–51 (1987)

    Article  Google Scholar 

  18. Young, A., Cowan, B., Thrupp, S., Hedley, W., Dell’Italia, L.: Left Ventricular Mass and Volume: Fast Calculation with Guide-Point Modeling on MR Images. Radiology 216(2), 597 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Medrano-Gracia, P. et al. (2013). An Atlas for Cardiac MRI Regional Wall Motion and Infarct Scoring. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36961-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36960-5

  • Online ISBN: 978-3-642-36961-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics