[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SAR Image Segmentation Based on Gabor Filter Bank and Active Contours

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

  • 2665 Accesses

Abstract

Image segmentation is a fundamental step and foundation for automatic SAR image interpretation. By combining the Gabor filter bank (GFB) and active contours, this paper proposes a new SAR image segmentation method. Firstly, GFB is used to efficiently suppress speckles in SAR image and modify the gray histogram into Gaussian mixture model (GMM). Then GMM-based pixel classification is employed to pre-segment the filtered image. Finally, the active contours, initialized with the pre-segmented regions, are applied to unfiltered image for the final segmentation with several iterations. Experiments are conducted to vivificate the efficiency and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jiao, L., Wang, S., Hou, B.: A Review of SAR Images Understanding and Interpretation. Acta Electronica Sinica 33(12), 2423–2434 (2005)

    Google Scholar 

  2. El Zaart, A., Ziou, D., Wang, S., Jiang, Q.: Segmentation of SAR Images. Pattern Recognit. 35(2), 713–724 (2002)

    Article  MATH  Google Scholar 

  3. Ross, T., Worrell, S., Velten, V., Mossing, J., Bryant, M.: Standard SAR ATR Evaluation Experiments Using the MSTAR Public Release Data Set. In: SPIE Conf. on Algorithms for Synthetic Aperture Radar Imagery, vol. 3370, pp. 566–573 (1998)

    Google Scholar 

  4. Chumsamrong, W., Thitimajshima, P., Rangsanseri, Y.: Synthetic Aperture Radar (SAR) Image Segmentation Using a New Modified Fuzzy C-means Algorithm. In: Proceedings of IEEE Symp. Geosci. Remote Sens., Honolulu, pp. 624–626 (2000)

    Google Scholar 

  5. Petrou, M., Matrucceli, A.: On the Stability of Thresholding SAR Images. Pattern Recognit. 31(11), 1791–1796 (1998)

    Article  Google Scholar 

  6. Hua, X., Pierce, L.E., Ulaby, F.T.: SAR Speckle Reduction Using Wavelet Denoising and Markov Random Field Modeling. IEEE Trans. Geosci. Remote Sens. 40(10), 2196–2212 (2002)

    Article  Google Scholar 

  7. Yan, X., Jiao, L., Xu, S.: SAR Image Segmentation Based on Gabor Filters of Adaptive Window in Overcomplete Brushlet Domain. In: Proceedings of Asia-Pacific Conference on Synthetic Aperture Radar, pp. 660–663 (2009)

    Google Scholar 

  8. Weisenseel, R.A., Karl, W.C., Castanon, D.A., Brower, R.C.: MRF-based Algorithms for Segmentation of SAR Images. In: Proceedings of the 1998 International Conference on Image Processing, vol. 3, pp. 770–774 (1998)

    Google Scholar 

  9. Horritt, M.S.: A Statistical Active Contour Model for SAR Image Segmentation. Image and Vision Computing 17, 213–224 (1999)

    Article  Google Scholar 

  10. Kristan, M., Leonardis, A., Skocaj, D.: Multivariate Online Kernel Density Estimation with Gaussian Kernels. Pattern Recognit. 44(10), 2630–2642 (2011)

    Article  MATH  Google Scholar 

  11. Ari, C., Aksoy, S., Arkan, O.: Maximum Likelihood Estimation of Gaussian Mixture Models Using Stochastic Search. Pattern Recognit. 45, 2804–2816 (2012)

    Article  MATH  Google Scholar 

  12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int. J. Compution Vision 1(4), 321–331 (1987)

    Article  Google Scholar 

  13. Peng, R., Wang, X., Lu, Y.: SAR Imagery Segmentation Based on Integrated Active Contour. In: Proceedings of the Int. Conf. on Advanced Computer Control, pp. 43–47 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ni, W., Gao, X., Yan, W. (2013). SAR Image Segmentation Based on Gabor Filter Bank and Active Contours. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics