[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Information-Based Scale Saliency Methods with Wavelet Sub-band Energy Density Descriptors

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7803))

Included in the following conference series:

Abstract

Pixel-based scale saliency (PSS) work bases on information estimation of data content and structure in multiscale analysis; its theoretical aspects as well as practical implementation are discussed by Kadir et al [11]. Scale Saliency framework [10] does not work only for pixels but other basis-projected descriptors as well. While wavelet atoms, localization in both time and frequency domain, are possible alternative descriptors, no theoretical analysis and practical solutions have been proposed yet. Our contribution is introducing a mathematical model of utilizing wavelet-based descriptors in a correspondent Wavelet-based Scale Saliency (WSS). It treats wavelet sub-band energy density of two popular discrete wavelet transform (DWT) and dual-tree complex wavelet transform (DTCWT) as basis descriptors instead of pixel-value descriptors for saliency map estimation. Then, ROC, AUC, and NSS quantitative analysis are comparing WSS against PSS as well as other state-of-the-art saliency methods ITT [9], SUN [18], SRS [8] on N. Bruce’s database [4] with human eye-tracking data as ground-truth. Furthermore, qualitative results, different saliency maps, are analyzed case by case for their pros and cons; especially their short-comings in specific situation or insensible results for human perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anh Cat, L.N., Qiu, G., Geoff, U., Li-minn, A., Kah Phooi, S.: Visual Information Based on Fast nonparametric multidimensional entropy estimation. International Conference on Acoustic, Speed and Signal Processing (1) (2012)

    Google Scholar 

  2. Baldi, P., Itti, L.: Of bits and wows: A Bayesian theory of surprise with applications to attention. Neural Networks: The Official Journal of the International Neural Network Society 23(5), 649–666 (2010)

    Article  Google Scholar 

  3. Borji, A., Sihite, D.N., Itti, L.: Quantitative Analysis of Human-Model Agreement in Visual Saliency Modeling: A Comparative Study. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society PP(99), 1–16 (2012)

    Google Scholar 

  4. Bruce, N.D.B., Tsotsos, J.K.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, vol. 18, p. 155 (2006)

    Google Scholar 

  5. Bruce, N.D.B., Tsotsos, J.K.: Saliency, attention, and visual search: An information theoretic approach. Journal of Vision 9, 1–24 (2009)

    Article  Google Scholar 

  6. Chan, W.L., Choi, H., Baraniuk, R.G.: Coherent multiscale image processing using dual-tree quaternion wavelets. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society 17(7), 1069–1082 (2008)

    Article  MathSciNet  Google Scholar 

  7. Gao, D., Mahadevan, V., Vasconcelos, N.: The discriminant center-surround hypothesis for bottom-up saliency. In: Advances in Neural Information Processing Systems, vol. 20, pp. 1–8 (2007)

    Google Scholar 

  8. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007). No. 800, pp. 1–8. IEEE Computer Society, Citeseer (2007)

    Google Scholar 

  9. Itti, L., Koch, C., Niebur, E., et al.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  10. Kadir, T., Boukerroui, D., Brady, M.: An analysis of the scale saliency algorithm. OUEL No: 2264 3, 1–38 (2003)

    Google Scholar 

  11. Kadir, T., Brady, M.: Saliency, scale and image description. International Journal of Computer Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  12. Qiu, G., Gu, X., Chen, Z., Chen, Q., Wang, C.: An information theoretic model of spatiotemporal visual saliency. To Appear, International Conference on Multimedia and Expo., pp. 1806–1809. Citeseer (2007)

    Google Scholar 

  13. Gilles, S.: Robust Description and Matching of Images. Ph.D. thesis, University of Oxford (1998)

    Google Scholar 

  14. Selesnick, I., Baraniuk, R., Kingsbury, N.: The dual-tree complex wavelet transform. IEEE Signal Processing Magazine 22(6), 123–151 (2005)

    Article  Google Scholar 

  15. Starck, J., Murtagh, F.: Multiscale entropy filtering. Signal Processing 76 (1999)

    Google Scholar 

  16. Stowell, D., Plumbley, M.D.: Fast multidimensional entropy estimation by k-d partitioning. Signal Processing 16(6), 537–540 (2009)

    Article  Google Scholar 

  17. Suau, P., Escolano, F.: A New Feasible Approach to Multi-dimensional Scale Saliency. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 77–88. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision 8(7), 321–20 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le Ngo, A.C., Ang, LM., Qiu, G., Seng, K.P. (2013). Information-Based Scale Saliency Methods with Wavelet Sub-band Energy Density Descriptors. In: Selamat, A., Nguyen, N.T., Haron, H. (eds) Intelligent Information and Database Systems. ACIIDS 2013. Lecture Notes in Computer Science(), vol 7803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36543-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36543-0_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36542-3

  • Online ISBN: 978-3-642-36543-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics