Abstract
Bounded Distance Decoding (BDD) is a basic lattice problem used in cryptanalysis: the security of most lattice-based encryption schemes relies on the hardness of some BDD, such as LWE. We study how to solve BDD using a classical method for finding shortest vectors in lattices: enumeration with pruning speedup, such as Gama-Nguyen-Regev extreme pruning from EUROCRYPT ’10. We obtain significant improvements upon Lindner-Peikert’s Search-LWE algorithm (from CT-RSA ’11), and update experimental cryptanalytic results, such as attacks on DSA with partially known nonces and GGH encryption challenges. Our work shows that any security estimate of BDD-based cryptosystems must take into account enumeration attacks, and that BDD enumeration can be practical even in high dimension like 350.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108 (1996)
Babai, L.: On Lovász’ Lattice Reduction and the Nearest Lattice Point Problem (Shortened Version). In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 13–20. Springer, Heidelberg (1984)
Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)
Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)
Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)
Gama, N., Nguyen, P.Q., Regev, O.: Lattice Enumeration Using Extreme Pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. STOC 2009, pp. 169–178. ACM (2009)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proc.STOC 2008, pp. 197–206. ACM (2008)
Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)
Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)
Regev, O.: Lattice-Based Cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 131–141. Springer, Heidelberg (2006)
National Institute of Standards and Technology (NIST). Fips publication 186:digital signature standard (1994)
Nguyên, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto’97. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304. Springer, Heidelberg (1999)
Nguyen, P.Q.: Public-key cryptanalysis. In: Luengo, I. (ed.) Recent Trends in Cryptography. Contemporary Mathematics, vol. 477, AMS–RSME (2009)
Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with partially known nonces. J. Cryptology 15(3), 151–176 (2002)
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proc. STOC 2009, pp. 333–342. ACM (2009)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc. STOC 2005, pp. 84–93. ACM (2005)
Regev, O.: The learning with errors problem (invited survey). In: Proc. IEEE Conference on Computational Complexity, pp. 191–204 (2010)
Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003)
Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003)
Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming 66, 181–199 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, M., Nguyen, P.Q. (2013). Solving BDD by Enumeration: An Update. In: Dawson, E. (eds) Topics in Cryptology – CT-RSA 2013. CT-RSA 2013. Lecture Notes in Computer Science, vol 7779. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36095-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-36095-4_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36094-7
Online ISBN: 978-3-642-36095-4
eBook Packages: Computer ScienceComputer Science (R0)