[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Solving BDD by Enumeration: An Update

  • Conference paper
Topics in Cryptology – CT-RSA 2013 (CT-RSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7779))

Included in the following conference series:

Abstract

Bounded Distance Decoding (BDD) is a basic lattice problem used in cryptanalysis: the security of most lattice-based encryption schemes relies on the hardness of some BDD, such as LWE. We study how to solve BDD using a classical method for finding shortest vectors in lattices: enumeration with pruning speedup, such as Gama-Nguyen-Regev extreme pruning from EUROCRYPT ’10. We obtain significant improvements upon Lindner-Peikert’s Search-LWE algorithm (from CT-RSA ’11), and update experimental cryptanalytic results, such as attacks on DSA with partially known nonces and GGH encryption challenges. Our work shows that any security estimate of BDD-based cryptosystems must take into account enumeration attacks, and that BDD enumeration can be practical even in high dimension like 350.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108 (1996)

    Google Scholar 

  2. Babai, L.: On Lovász’ Lattice Reduction and the Nearest Lattice Point Problem (Shortened Version). In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 13–20. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  3. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Gama, N., Nguyen, P.Q., Regev, O.: Lattice Enumeration Using Extreme Pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  8. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proc.STOC 2008, pp. 197–206. ACM (2008)

    Google Scholar 

  9. Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Regev, O.: Lattice-Based Cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 131–141. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. National Institute of Standards and Technology (NIST). Fips publication 186:digital signature standard (1994)

    Google Scholar 

  13. Nguyên, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto’97. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Nguyen, P.Q.: Public-key cryptanalysis. In: Luengo, I. (ed.) Recent Trends in Cryptography. Contemporary Mathematics, vol. 477, AMS–RSME (2009)

    Google Scholar 

  15. Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with partially known nonces. J. Cryptology 15(3), 151–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proc. STOC 2009, pp. 333–342. ACM (2009)

    Google Scholar 

  17. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc. STOC 2005, pp. 84–93. ACM (2005)

    Google Scholar 

  18. Regev, O.: The learning with errors problem (invited survey). In: Proc. IEEE Conference on Computational Complexity, pp. 191–204 (2010)

    Google Scholar 

  19. Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming 66, 181–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, M., Nguyen, P.Q. (2013). Solving BDD by Enumeration: An Update. In: Dawson, E. (eds) Topics in Cryptology – CT-RSA 2013. CT-RSA 2013. Lecture Notes in Computer Science, vol 7779. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36095-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36095-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36094-7

  • Online ISBN: 978-3-642-36095-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics