[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Flexible Presentation of Videos Based on Affective Content Analysis

  • Conference paper
Advances in Multimedia Modeling (MMM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7732))

Included in the following conference series:

Abstract

The explosion of multimedia contents has resulted in a great demand of video presentation. While most previous works focused on presenting certain type of videos or summarizing videos by event detection, we propose a novel method to present general videos of different genres based on affective content analysis. We first extract rich audio-visual affective features and select discriminative ones. Then we map effective features into corresponding affective states in an improved categorical emotion space using hidden conditional random fields (HCRFs). Finally we draw affective curves which tell the types and intensities of emotions. With the curves and related affective visualization techniques, we select the most affective shots and concatenate them to construct affective video presentation with a flexible and changeable type and length. Experiments on representative video database from the web demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, C., Huang, Q., Jiang, S., et al.: A framework for flexible summarization of racquet sports video using multiple modalities. Computer Vision and Image Understanding 113(3), 415–424 (2009)

    Article  Google Scholar 

  2. Zhao, Z., Jiang, S., Huang, Q., Zhu, G.: Highlight summarization in sports video based on replay detection. In: IEEE International Conference on Multimedia & Expo, pp. 1613–1616 (2006)

    Google Scholar 

  3. Xiang, X., Kankanhalli, M.: Affect-based adaptive presentation of home videos. In: ACM Multimedia, pp. 553–562 (2011)

    Google Scholar 

  4. Wang, M., Hong, R., Li, G., Zha, Z., Yan, S., Chua, T.: Event Driven Web Video Summarization by Tag Localization and Key-Shot Identification. IEEE Transactions on Multimedia 14(4), 975–985 (2012)

    Article  Google Scholar 

  5. Wang, M., Hong, R., Yuan, X., Yan, S., Chua, T.: Movie2Comics: Towards a Lively Video Content Presentation. IEEE Transactions on Multimedia 14(3), 858–870 (2012)

    Article  Google Scholar 

  6. Machajdik, J., Hanbury, A.: Affective image classification using features inspired by psychology and art theory. In: ACM Multimedia, pp. 83–92 (2010)

    Google Scholar 

  7. Kang, H.: Affective Content Detection Using HMMs. In: ACM Multimedia, pp. 259–262 (2003)

    Google Scholar 

  8. Xu, M., Jin, J., Luo, S.: Hierarchical Movie Affective Content Analysis Based on Arousal and Valence Features. In: ACM Multimedia, pp. 677–680 (2008)

    Google Scholar 

  9. Schlosberg, H.: Three Dimensions of Emotion. Psychological Review 61(2), 81–88 (1954)

    Article  Google Scholar 

  10. Hanjalic, A., Xu, L.: Affective Video Content Representation and Modeling. IEEE Transactions on Multimedia 7(1), 143–154 (2005)

    Article  Google Scholar 

  11. Arifin, S., Cheung, P.Y.K.: A Computation Method for Video Segmentation Utilizing the Pleasure-Arousal-Dominance Emotional Information. In: ACM Multimedia, pp. 68–77 (2007)

    Google Scholar 

  12. Zhang, S., Tian, Q., Huang, Q., Gao, W., Li, S.: Utilizing affective analysis for efficient movie browsing. In: IEEE International Conference on Image Processing, pp. 1853–1856 (2009)

    Google Scholar 

  13. Nicolaou, M.A., Gunes, H., Pantic, M.: A Multi-layer Hybrid Framework for Dimensional Emotion Classification. In: ACM Multimedia, pp. 933–936 (2011)

    Google Scholar 

  14. Ma, Y.-F., Lu, L., Zhang, H.-J., Li, M.: A User Attention Model for Video Summarization. In: ACM Multimedia (2002)

    Google Scholar 

  15. Joho, H., Staiano, J., Sebe, N., Jose, J.M.: Looking at the viewer: analysing facial activity to detect personal highlights of multimedia contents. Multimedia Tools Application 51(2), 505–523 (2011)

    Article  Google Scholar 

  16. Joho, H., Jose, J.M., Valenti, R., Sebe, N.: Exploiting facial expressions for affective video summarization. In: ACM International Conference on Image and Video Retrieval (2009)

    Google Scholar 

  17. Zhao, S., Yao, H., Sun, X., Xu, P., Liu, X., Ji, R.: Video Indexing and Recommendation Based on Affective Analysis of Viewers. In: ACM Multimedia, pp. 1473–1476 (2011)

    Google Scholar 

  18. Zhao, S., Yao, H., Sun, X.: Video Classification and Recommendation Based on Affective Analysis of Viewers. Neurocomputing (to appear, 2012)

    Google Scholar 

  19. Yang, P., Liu, Q., Metaxas, D.N.: RankBoost with l 1 regularization for Facial Expression Recognition and Intensity Estimation. In: IEEE International Conference on Computer Vision, pp. 1018–1025 (2009)

    Google Scholar 

  20. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: IEEE International Conference on Machine Learning (2001)

    Google Scholar 

  21. Quattoni, A., Collins, M., Darrell, T.: Conditional random fields for object recognition. In: Neural Information Processing Systems (2004)

    Google Scholar 

  22. Irie, G., Satou, T., Kojima, A., Yamasaki, T., Aizawa, K.: Affective Audio-Visual Words and Latent Topic Driving Model for Realizing Movie Affective Scene Classification. IEEE Transactions on Multimedia 16(2), 523–535 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, S., Yao, H., Sun, X., Jiang, X., Xu, P. (2013). Flexible Presentation of Videos Based on Affective Content Analysis. In: Li, S., et al. Advances in Multimedia Modeling. MMM 2013. Lecture Notes in Computer Science, vol 7732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35725-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35725-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35724-4

  • Online ISBN: 978-3-642-35725-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics