[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Algebra Unifies Operational Calculi

  • Conference paper
Unifying Theories of Programming (UTP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7681))

Included in the following conference series:

Abstract

We survey the well-known algebraic laws of sequential programming, and propose some less familiar laws for concurrent programming. On the basis of these laws, we derive a general calculus of program execution. The basic judgment of the theory is a quintuple, and we deduce its rules by algebraic reasoning. The general calculus can be specialised to obtain more familiar operational calculi, such as the structural operational semantics of Plotkin, process calculus semantics of Milner, reduction semantics with evaluation contexts of Felleisen and Hieb, and the natural semantics of Kahn. The algebra unifies these calculi, as it is simpler than each calculus derived from it, and stronger than all of them put together.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 32.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 41.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark (September 1981)

    Google Scholar 

  2. Kahn, G.: Natural Semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  3. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control and state. Theor. Comput. Sci. 103(2), 235–271 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hoare, C.A.R., Hayes, I.J., Jifeng, H., Morgan, C.C., Roscoe, A.W., Sanders, J.W., Sorensen, I.H., Spivey, J.M., Sufrin, B.A.: Laws of programming. Commun. ACM 30, 672–686 (1987)

    Article  MATH  Google Scholar 

  5. Isabelle/HOL proofs (2012), http://se.inf.ethz.ch/people/vanstaden/AlgebraUnifiesOperationalCalculi.thy

  6. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110, 366–390 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tony Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene Algebra. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–414. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Book  Google Scholar 

  9. Fokkink, W.: Introduction to Process Algebra, 1st edn. Springer-Verlag New York, Inc., New York (2000)

    MATH  Google Scholar 

  10. Roşu, G.: Programming Languages: A Rewriting Approach, http://fsl.cs.uiuc.edu/pub/pl.pdf

  11. Plotkin, G.D.: The origins of structural operational semantics. Journal of Logic and Algebraic Programming 60-61, 3–15 (2004)

    Article  MathSciNet  Google Scholar 

  12. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Science 96(1), 217–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal Introduction, Revised edn. (July 1999), http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html ; Original edition published by John Wiley & Sons (1992)

  14. Wehrman, I., Hoare, C.A.R., O’Hearn, P.W.: Graphical models of separation logic. Inf. Process. Lett. 109(17), 1001–1004 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Staden, S., Hoare, T. (2013). Algebra Unifies Operational Calculi. In: Wolff, B., Gaudel, MC., Feliachi, A. (eds) Unifying Theories of Programming. UTP 2012. Lecture Notes in Computer Science, vol 7681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35705-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35705-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35704-6

  • Online ISBN: 978-3-642-35705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics