[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Entanglement of Conceptual Entities in Quantum Model Theory (QMod)

  • Conference paper
Quantum Interaction (QI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7620))

Included in the following conference series:

Abstract

We have recently elaborated Quantum Model Theory (QMod) to model situations where the quantum effects of contextuality, interference, superposition, entanglement and emergence, appear independently of the microscopic nature of the entities giving rise to these situations. We have shown that QMod models without introducing linearity for the set of the states. In this paper we prove that QMod, although not using linearity for the state space, provides a method of identification for entangled states and an intuitive explanation for their occurrence. We illustrate this method for entanglement identification with concrete examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aerts, D., Sozzo, S.: Quantum Model Theory (QMod): Modeling Contextual Emergent Entangled Interfering Entities. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A. (eds.) QI 2012. LNCS, vol. 7620, pp. 126–137. Springer, Heidelberg (2012)

    Google Scholar 

  2. Aerts, D.: Quantum Structure in Cognition. J. Math. Psych. 53, 314–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aerts, D.: Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory. Found. Sci. 14, 361–411 (2010)

    Article  MathSciNet  Google Scholar 

  4. Aerts, D.: Interpreting Quantum Particles as Conceptual Entities. Int. J. Theor. Phys. 49, 2950–2970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aerts, D.: A Potentiality and Conceptuality Interpretation of Quantum Physics. Philosophica 83, 15–52 (2010)

    Google Scholar 

  6. Aerts, D.: Being and Change: Foundations of a Realistic Operational Formalism. In: Aerts, D., Czachor, M., Durt, T. (eds.) Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics, pp. 71–110. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  7. Gabora, L., Aerts, D.: Contextualizing Concepts Using a Mathematical Generalization of the Quantum Formalism. J. Exp. Theor. Art. Int. 14, 327–358 (2002)

    Article  MATH  Google Scholar 

  8. Aerts, D., Gabora, L.: A Theory of Concepts and Their Combinations I: The Structure of the Sets of Contexts and Properties. Kybernetes 34, 167–191 (2005)

    Article  MATH  Google Scholar 

  9. Aerts, D., Gabora, L.: A Theory of Concepts and Their Combinations II: A Hilbert Space Representation. Kybernetes 34, 192–221 (2005)

    Article  MATH  Google Scholar 

  10. Gabora, L.: Cultural Evolution Entails (Creativity Entails (Concept Combination Entails Quantum Structure)). In: Bruza, P., Lawless, W., van Rijsbergen, K., Sofge, D. (eds.) Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium 8: Quantum Interaction, March 26-28, pp. 106–113. Stanford University, Stanford (2007)

    Google Scholar 

  11. Nelson, D.L.: Entangled Associative Structures and Context. In: Bruza, P., Lawless, W., van Rijsbergen, K., Sofge, D. (eds.) Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium 8: Quantum Interaction, March 26-28. Stanford University, Stanford (2007)

    Google Scholar 

  12. Gabora, L., Rosch, E., Aerts, D.: Toward an Ecological Theory of Concepts. Ecol. Psych. 20, 84–116 (2008)

    Article  Google Scholar 

  13. Flender, C., Kitto, K., Bruza, P.: Beyond Ontology in Information Systems. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 276–288. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Gabora, L., Aerts, D.: A Model of the Emergence and Evolution of Integrated Worldviews. J. Math. Psych. 53, 434–451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Hooghe, B.: The SCOP-formalism: An Operational Approach to Quantum Mechanics. In: AIP Conference Proceedings, vol. 1232, pp. 33–44 (2010)

    Google Scholar 

  16. Aerts, D., Czachor, M., Sozzo, S.: A Contextual Quantum-based Formalism for Population Dynamics. In: Proceedings of the AAAI Fall Symposium (FS-10-08), Quantum Informatics for Cognitive, Social, and Semantic Processes, pp. 22–25 (2010)

    Google Scholar 

  17. Veloz, T., Gabora, L., Eyjolfson, M., Aerts, D.: Toward a Formal Model of the Shifting Relationship between Concepts and Contexts during Associative Thought. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.) QI 2011. LNCS, vol. 7052, pp. 25–34. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Aerts, D., Sozzo, S.: Quantum Structure in Cognition: Why and How Concepts Are Entangled. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.) QI 2011. LNCS, vol. 7052, pp. 116–127. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Aerts, D.: A Possible Explanation for the Probabilities of Quantum Mechanics. J. Math. Phys. 27, 202–210 (1986)

    Article  MathSciNet  Google Scholar 

  20. Aerts, D.: Quantum Structures due to Fluctuations of the Measurement Situations. Int. J. Theor. Phys. 32, 2207–2220 (1993)

    Article  MathSciNet  Google Scholar 

  21. Aerts, D.: Quantum Structures, Separated Physical Entities and Probability. Found. Phys. 24, 1227–1259 (1994)

    Article  MathSciNet  Google Scholar 

  22. Aerts, D.: Quantum Structures: An Attempt to Explain Their Appearance in Nature. Int. J. Theor. Phys. 34, 1165–1186 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Aerts, D., Aerts, S.: The Hidden Measurement Formalism: Quantum Mechanics as a Consequence of Fluctuations on the Measurement. In: Ferrero, M., van der Merwe, A. (eds.) New Developments on Fundamental Problems in Quantum Physics, pp. 1–6. Springer, Dordrecht (1997)

    Chapter  Google Scholar 

  24. Aerts, D., Aerts, S., Coecke, B., D’Hooghe, B., Durt, T., Valckenborgh, F.: A Model with Varying Fluctuations in the Measurement Context. In: Ferrero, M., van der Merwe, A. (eds.) New Developments on Fundamental Problems in Quantum Physics, pp. 7–9. Springer, Dordrecht (1997)

    Chapter  Google Scholar 

  25. Aerts, D., Aerts, S., Durt, T., Lévêque, O.: Classical and Quantum Probability in the ε-model. Int. J. Theor. Phys. 38, 407–429 (1999)

    Article  MATH  Google Scholar 

  26. Aerts, S.: Hidden Measurements from Contextual Axiomatics. In: Aerts, D., Czachor, M., Durt, T. (eds.) Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics, pp. 149–164. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  27. Aerts, S.: The Born Rule from a Consistency Requirement on Hidden Measurements in Complex Hilbert Space. Int. J. Theor. Phys. 44, 999–1009 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Aerts, S.: Quantum and Classical Probability as Bayes-optimal Observation (2006), http://uk.arxiv.org/abs/quant-ph/0601138

  29. Aerts, D.: Example of a macroscopical situation that violates Bell inequalities. Lettere al Nuovo Cimento 34, 107–111 (1982)

    Article  Google Scholar 

  30. Aerts, D.: A mechanistic classical laboratory situation violating the Bell inequalities with 2\(\sqrt{2}\), exactly ‘in the same way’ as its violations by the EPR experiments. Helvetica Physica Acta 64, 1–23 (1991)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aerts, D., Sozzo, S. (2012). Entanglement of Conceptual Entities in Quantum Model Theory (QMod). In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M. (eds) Quantum Interaction. QI 2012. Lecture Notes in Computer Science, vol 7620. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35659-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35659-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35658-2

  • Online ISBN: 978-3-642-35659-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics