[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Evolution of the Evolving Neuro-Fuzzy Systems: From Expert Systems to Spiking-, Neurogenetic-, and Quantum Inspired

  • Chapter
On Fuzziness

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 298))

Abstract

This chapter follows the development of a class of intelligent information systems called evolving neuro-fuzzy systems (ENFS). ENFS combine the adaptive/ evolving learning ability of neural networks and the approximate reasoning and linguistically meaningful explanation features of fuzzy rules. The review includes fuzzy expert systems, fuzzy neuronal networks, evolving connectionist systems, spiking neural networks, neurogenetic systems, and quantum inspired systems, all discussed from the point of few of fuzzy rule interpretation as new knowledge acquired during their adaptive/evolving learning. This review is based on the author’s personal (evolving) research, integrating principles from neural networks, fuzzy systems and nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benuskova, L., Kasabov, N.: Computational Neuro-genetic Modelling. Springer, New York (2007)

    Book  Google Scholar 

  2. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  3. Bezdek, J. (ed.): Analysis of Fuzzy Information, vol. 1, 2, 3. CRC Press, Boca Raton (1987)

    MATH  Google Scholar 

  4. Bezdek, J.: A Review of Probabilistic, Fuzzy, and Neural Models for Pattern Recognition. Journal of Intelligent and Fuzzy Systems 1, 1–25 (1993)

    Google Scholar 

  5. Defoin-Platel, M., Schliebs, S., Kasabov, N.: Quantum-inspired Evolutionary Algorithm: A multi-model EDA. IEEE Transactions on Evolutionary Computation 13(6), 1218–1232 (2009)

    Article  Google Scholar 

  6. Furuhashi, T., Hasegawa, T., Shin-ichi, H., Uchikawa, Y.: An Adaptive Fuzzy Controller Using Fuzzy Neural Networks. In: Proceedings of Fifth IFSA World Congress, pp. 769–772 (1993)

    Google Scholar 

  7. Futschik, M.E., Kasabov, N.: Fuzzy Clustering in Gene Expression Data Analysis. In: Proceedings of the World Congress of Computational Intelligence WCCI 2002, Hawaii. IEEE Press (May 2002)

    Google Scholar 

  8. Gerstner, W.: Time Structure of the Activity of Neural Network Models. Physical Review E 51, 738–758 (1995)

    Article  Google Scholar 

  9. Hebb, D.: The Organization of Behavior. John Wiley and Sons, New York (1949)

    Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. Journal of Physiology 117, 500–544 (1952)

    Google Scholar 

  11. Hopfield, J.J.: Pattern Recognition Computation Using Action Potential Timing for Stimulus Representation. Nature 376, 33–36 (1995)

    Article  Google Scholar 

  12. Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  13. Kasabov, N.: Incorporating Neural Networks into Production Systems and a Practical Approach Towards the Realisation of Fuzzy Expert Systems. Computer Science and Informatics 21(2), 26–34 (1991)

    Google Scholar 

  14. Kasabov, N.: Hybrid Connectionist Production Systems. Journal of Systems Engineering 3(1), 15–21 (1993)

    Google Scholar 

  15. Kasabov, N., Shishkov, S.: A Connectionist Production System With Partial Match and its Use for Approximate Reasoning. Connection Science 5(3-4), 275–305 (1993)

    Article  Google Scholar 

  16. Kasabov, N.: Connectionist Fuzzy Production Systems. In: Ralesu, A.L. (ed.) Fuzzy Logic in Artifical Intelligence. LNCS (LNAI), vol. 847, pp. 114–128. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  17. Kasabov, N.: Hybrid Connectionist Fuzzy Production Systems – Towards Building Comprehensive AI. Intelligent Automation and Soft Computing 1(4), 351–360 (1995)

    Google Scholar 

  18. Kasabov, N.: Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  19. Kasabov, N., Kim, J.S., Michaeland, W., Gray, A.: FuNN/2 – A Fuzzy Neural Network Architecture for Adaptive Learning and Knowledge Acquisition. Information Sciences - Applications 101(3-4), 155–175 (1997)

    Google Scholar 

  20. Kasabov, N.: Evolving Fuzzy Neural Networks – Algorithms, Applications and Biological Motivation. In: Yamakawa, T., Matsumoto, G. (eds.) Methodologies for the Conception, Design and Application of Soft Computing, pp. 271–274. World Scientific (1998)

    Google Scholar 

  21. Kasabov, N.: Evolving Fuzzy Neural Networks for on-line Supervised/unsupervised, Knowledge-based Learning. IEEE Transactions on Systems, Man, and Cybernetics 31(6), 902–918 (2001)

    Article  Google Scholar 

  22. Kasabov, N.: Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  23. Kasabov, N., Song, Q.: DENFIS: Dynamic, Evolving Neural-fuzzy Inference Systems and its Application for Time-series Prediction. IEEE Transactions on Fuzzy Systems 10, 144–154 (2002)

    Article  Google Scholar 

  24. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach, 1st edn. Springer, London (2007) (2003)

    MATH  Google Scholar 

  25. Kasabov, N., Hu, Y.: Integrated Optimisation Method for Personalised Modelling and Case Study Applications. International Journal of Functional Informatics and Personalised Medicine 3(3), 236–256 (2010)

    Article  Google Scholar 

  26. Soltic, S., Kasabov, N.: Knowledge Extraction From Evolving Spiking Neural Networks With Rank Order Population Coding. International Journal of Neural Systems 20(6), 437–445 (2010)

    Article  Google Scholar 

  27. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian Learning Through Spike-timing-dependent Synaptic Plasticity. Nature Neuroscience 3, 919–926 (2000)

    Article  Google Scholar 

  28. Song, Q., Kasabov, N.: TWNFI- A Transductive Neuro-fuzzy Inference System With Weighted Data Normalisation for Personalised Modelling. Neural Networks 19(10), 1591–1596 (2006)

    Article  MATH  Google Scholar 

  29. Thorpe, S.J., Delorme, A., Van Rullen, R.: Spike-based Strategies for Rapid Processing. Neural Networks 14(6-7), 715–725 (2001)

    Article  Google Scholar 

  30. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An Experimental Unification of Reservoir Computing Methods. Neural Networks 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  31. Watts, M.J.: A Decade of Kasabov’s Evolving Connectionist Systems: A Review. IEEE Transactions on Systems, Man and Cybernetics – Part C: Applications and Reviews 39(3), 253–269 (2009)

    Article  Google Scholar 

  32. Widiputra, H., Pears, R., Kasabov, N.: Multiple Time-Series Prediction Through Multiple Time-Series Relationships Profiling and Clustered Recurring Trends. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 161–172. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Wysoski, S.G., Benuskova, L., Kasabov, N.: Evolving Spiking Neural Networks for Audiovisual Information Processing. Neural Networks 23(7), 819–835 (2010)

    Article  Google Scholar 

  34. Yager Ronald, R., Filev, D.: Generation of Fuzzy Rules by Mountain Clustering. Journal of Intelligent and Fuzzy Systems 2, 209–219 (1994)

    Google Scholar 

  35. Yamakawa, T., Uchino, E., Miki, T., Kusanagi, H.: A Neo Fuzzy Neuron and Its Application to System Identification and Prediction of the System Behaviour. In: Proceedings of the 2nd International Conference on Fuzzy Logic & Neural Networks, Iizuka 1992, Iizuka, Japan, pp. 477–483 (1992)

    Google Scholar 

  36. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zadeh, L.A.: A Theory of Approximate Reasoning. In: Hayes, J.E.M., Donald, L.I.M. (eds.) Machine Intelligence (based on the International Machine Intelligence Workshop), vol. 9, pp. 149–194. Elsevier, New York (1979)

    Google Scholar 

  38. Zadeh, L.A.: Fuzzy Logic. IEEE Computer 21, 83–93 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kasabov, N. (2013). The Evolution of the Evolving Neuro-Fuzzy Systems: From Expert Systems to Spiking-, Neurogenetic-, and Quantum Inspired. In: Seising, R., Trillas, E., Moraga, C., Termini, S. (eds) On Fuzziness. Studies in Fuzziness and Soft Computing, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35641-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35641-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35640-7

  • Online ISBN: 978-3-642-35641-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics