Abstract
This paper offers a short discussion of the property of local finiteness for t-norm monoids and bimonoids. Such bimonoids are of interest in the context of weighted automata. The paper shows that, perhaps unexpectedly, the situation is more complex in the bimonoidal case than it is for monoids: there there are more possibilities for local finiteness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alsina, C., Trillas, E., Valverde, L.: On Non-distributive Logical Connectives for Fuzzy Sets Theory. Busefal 3, 18–29 (1980)
Cintula, P., Hájek, P.: Triangular Norm Based Predicate Fuzzy Logics. Fuzzy Sets and Systems 161, 311–346 (2010)
Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic. Studies in Logic, vol. 37-38. College Publications, London (2011)
Droste, M., Stüber, T., Vogler, H.: Weighted Finite Automata Over Strong Bimonoids. Information Sciences 180, 156–166 (2010)
Dubois, D.: Triangular Norms for Fuzzy Sets. In: Klement, E.P. (ed.) Proceedings of the 2nd International Seminar Fuzzy Set Theory, pp. 39–68. Johannes Kepler University, Linz (1980)
Gottwald, S.: T-Normen und ϕ-Operatoren als Wahrheitswertfunktionen Mehrwertiger Junktoren. In: Wechsung, G. (ed.) Proceedings of the International Frege Conference 1984, Schwerin, Mathematical Research, vol. 20, pp. 121–128. Akademie-Verlag, Berlin (1984)
Gottwald, S.: Fuzzy Set Theory with t-norms and ϕ-operators. In: di Nola, A., Ventre, A.G.S. (eds.) The Mathematics of Fuzzy Systems. Interdisciplinary Systems Research, vol. 88, pp. 143–195. TÜV Rheinland, Köln (1986)
Gottwald, S.: Fuzzy Sets and Fuzzy Logic. Artificial Intelligence. Verlag Vieweg, Tecnea, Wiesbaden, Toulouse (1993)
Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computation, vol. 9. Research Studies Press, Baldock (2001)
Gottwald, S., Hájek, P.: T-norm Based Mathematical Fuzzy Logics. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 275–299. Elsevier, Dordrecht (2005)
Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic, vol. 4. Kluwer Acad. Publ., Dordrecht (1998)
Klement, E.P.: Construction of Fuzzy σ-algebras Using Triangular Norms. Journal Mathematical Analysis Applications 85, 543–565 (1982)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)
Prade, H.: Unions et intersections d’ensembles flous. Busefal 3, 58–62 (1980)
Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland Publ. Comp., Amsterdam (1983)
Weber, S.: A General Concept of Fuzzy Connectives, Negations and Implications Based on t-norms and t-conorms. Fuzzy Sets and Systems 11, 115–134 (1983)
Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gottwald, S. (2013). Local Finiteness in T-Norm Based Bimonoides. In: Seising, R., Trillas, E., Moraga, C., Termini, S. (eds) On Fuzziness. Studies in Fuzziness and Soft Computing, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35641-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-35641-4_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35640-7
Online ISBN: 978-3-642-35641-4
eBook Packages: EngineeringEngineering (R0)