Abstract
Brain Computer Interfaces (BCI) is the generic denomination of systems aiming to establish communication between a human being and an automated system, based on the electric brain signals detected through a variety of modalities. Among these, electroencephalographic signals (EEG) have received considerable attention due to several factors arising on practical scenarios, such as noninvasiveness, portability, and relative cost, without lost on accuracy and generalization. In this chapter we discuss the characteristics of a typical phenomenon associated to motor imagery and mental tasks experiments, known as event related synchronization and desynchronization (ERD/ERS), as well as its energy distribution in the time-frequency space. The typical behavior of ERD/ERS phenomenon has led proposal of different approaches oriented to the solution of the identification problem. In this work, an architecture based on adaptive neuro-fuzzy inference systems (ANFIS) assembled to a recurrent neural network, applied to the problem of mental tasks temporal classification, is presented. The electroencephalographic signals (EEG) are pre-processed through band-pass filtering in order to separate the set of energy signals in alpha and beta bands. The energy in each band is represented by fuzzy sets obtained through an ANFIS system, and the temporal sequence corresponding to the combination to be detected, associated to the specific mental task, is entered into a recurrent neural network. Experimentation using EEG signals corresponding to mental tasks exercises, obtained from a database available to the international community for research purposes, is reported. Two recurrent neural networks are used for comparison purposes: Elman network, and a fully connected recurrent neural network (FCRNN) trained by RTRL-EKF (real time recurrent learning – extended Kalman filter). A classification rate of 88.12 % in average was obtained through the FCRNN during the generalization stage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brunner, P., Bianchi, L., Guger, C., Cincotti, F., Schalk, G.: Current trends in hardware and software for brain–computer interfaces (BCIs). Journal of Neural Engineering 8, 025001 (2011)
Bashashati, M., Fatourechi, R., Ward, K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering 4(2), R32–R57 (2007)
Berger, T.W., Chapin, J.K., Gerhardt, G.A., McFarland, D.J., Principe, J.C., Soussou, W.V., Taylor, D.M., Tresco, P.A.: WTEC Panel Report on International Assessment of Research and Development in Brain-Computer Interfaces. World Technology Evaluation Center, Inc. (2007), http://www.wtec.org/bci/BCI-finalreport-26Aug2008-lowres.pdf
Hosni, S.M., Gadallah, M.E., Bahgat, S.F., AbdelWahab, M.S.: Classification of EEG signals using different feature extraction techniques for mental-task BCI. In: 2007 International Conference on Computer Engineering Systems, pp. 220–226 (2007)
Neuper, C., Scherer, R., Wriessnegger, S., Pfurtscheller, G.: Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clinical Neurophysiology 120(2), 239–247 (2009)
Solis-Escalante, T., Muller-Putz, G., Brunner, C., Kaiser, V., Pfurtscheller, G.: Analysis of sensorimotor rhythms for the implementation of a brain switch for healthy subjects. Biomedical Signal Processing and Control 5(1), 15–20 (2010)
McFarland, D.J., Sarnacki, W.A., Townsend, G., Vaughan, T., Wolpaw, J.R.: The P-300-based brain–computer interface (BCI): Effects of stimulus rate. Clinical Neurophysiology 122(4), 731–737 (2011)
Ramirez-Cortes, J.M., Alarcon-Aquino, V., Rosas-Cholula, G., Gomez-Gil, P., Escamilla-Ambrosio, J.: Anfis-Based P300 Rhythm Detection Using Wavelet Feature Extraction on Blind Source Separated EEG Signals. In: Ao, S., Amouzegar, M., Rieger, B.B. (eds.) Intelligent Automation and Systems Engineering, ch. 27. LNEE, vol. 103, pp. 353–365. Springer, New York (2011)
Shyu, K.K., Lee, P.L., Liu, Y.J., Sie, J.J.: Dual-frequency steady-state visual evoked potential for brain computer interface. Neuroscience Letters 483(1), 28–31 (2010)
Horki, P., Solis-Escalante, T., Neuper, C., Muller-Putz, G.R.: Hybrid Motor Imagery and Steady-state Visual Evoked Potential Based BCI for Artificial Arm Control. In: Proceedings of the First Tools for Brain Computer Interaction Workshop, Graz, Austria, p. 46 (2010)
Wang, H., Li, C.S., Li, Y.G.: Brain-computer interface design based on slow cortical potentials using Matlab/Simulink. In: Proceedings of the International Conference on Mechatronics and Automation, Changchun, China, pp. 1044–1048 (2009)
Khare, V., Santhosh, J., Anand, S., Bhatia, M.: Performance comparison of three artificial neural network methods for classification of electroencephalograph signals of five mental tasks. J. Biomedical Science and Engineering 3, 200–205 (2010)
Pfurtscheller, G.: Spatiotemporal ERD/ERS patterns during voluntary movement and motor imagery. Supplements to Clinical Neurophysiology 53, 196–198 (2000)
Chiappa, S., Bengio, S.: HMM and IOHMM modeling of EEG rhythms for asynchronous BCI systems. In: European Symposium on Artificial Neural Networks, ESANN (2004)
Millan, J.R., Mouriño, J.: Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 159–161 (2003)
Pfurtscheller, G., Neuper, C., Schlogl, A., Lugger, K.: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans. Rehabil. Eng. 6, 316–325 (1998)
Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M.: EEG-based discrimination between imagination of right and left hand movement. Electroenceph. Clin. Neurophysiology 103, 642–651 (1997)
Wang, T., He, B.: An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain–computer interface. J. Neural Eng. 1, 1–7 (2004)
Wang, T., Denga, J., He, B.: Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clinical Neurophysiology 115, 2744–2753 (2004)
Durka, P.: Matching Pursuit and Unification in EEG Analysis. Artech House, Inc., Norwood (2007)
Wang, J., Xu, G., Wang, L., Zhang, H.: Feature extraction of brain-computer interface based on improved multivariate adaptive autoregressive models. In: Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics (BMEI), Yantai, China, pp. 895–898 (2010)
Kołodziej, M., Majkowski, A., Rak, R.J.: A New Method of EEG Classification for BCI with Feature Extraction Based on Higher Order Statistics of Wavelet Components and Selection with Genetic Algorithms. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part I. LNCS, vol. 6593, pp. 280–289. Springer, Heidelberg (2011)
Vijean, V., Hariharan, M., Saidatul, A., Yaacob, S.: Mental tasks classifications using S-transform for BCI applications. In: Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, Semenyih, Malaysia, pp. 69–73 (2011)
Lotte, F.: The use of fuzzy inference systems for classification in EEG-based brain-computer interfaces. In: Proceedings of the 3rd International Brain-Computer Interfaces Workshop and Training Course, Graz, Austria (2006)
Zhang, L., He, W., He, C., Wang, P.: Improving mental task classification by adding high frequency band information. Journal of Medical Systems 34(1), 51–60 (2010)
Palaniappan, R.: Utilizing Gamma band to improve mental task based brain-computer interface design. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(3), 299–303 (2006)
Park, C., Looney, D., Kidmose, P., Ungstrup, M., Mandic, D.P.: Time-frequency analysis of EEG asymmetry using bivariate Empirical Mode Decomposition. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(4), 366–373 (2011)
Kousarrizi, M.R.N., Ghanbari, A.A., Teshnehlab, M., Shorehdeli, M.A., Gharaviri, A.: Feature extraction and classification of EEG signals using Wavelet Transform, SVM and artificial neural networks for brain computer interfaces. In: Proceedings of the International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, Shanghai, China, pp. 352–355 (2009)
Forney, E.M., Anderson, C.W.: Classification of EEG during imagined mental tasks by forecasting with Elman recurrent neural networks. In: Proceedings of the International Joint Conference on Neural Networks, San Jose, California, USA, pp. 2749–2755 (2011)
Coyle, D., McGinnity, T.M., Prasad, G.: Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomedical Signal Processing and Control 5(3), 196–204 (2010)
Chang, F., Chang, Y.: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources 29(1), 1–10 (2006)
Subasi, A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Computers in Biology and Medicine 37(2), 227–244 (2007)
Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems Man and Cybernetics 23(3), 665–685 (1993)
Mandic, D., Chambers, J.: Recurrent neural networks for prediction. John Wiley & Sons, Chinchester (2001)
Fuchs, E., Gruber, C., Reitmaier, T., Sick, B.: Processing short-term and long-term information with a combination of polynomial approximation techniques and time-delay neural networks. IEEE Transactions on Neural Networks 20(9), 1450–1462 (2009)
Gomez-Gil, P.: Long term prediction, chaos and artificial neural networks. Where is the meeting point? Engineering Letters 15(1), 1–5 (2007)
Skarda, C., Freeman, W.: How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences 10, 161–195 (1987)
Jordan, M.: Serial order: a parallel distributed processing approach. Technical Report TR-8604. UC San Diego Institute for Cognitive Science, San Diego (1986)
Elman, J.: Finding structure in time. Cognitive Science 14, 179–211 (1990)
Werbos, P.: Backpropagation through time: what it does and how to do it. Proceedings IEEE 74(10), 1550–1560 (1990)
Williams, R., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1, 270–280 (1989)
Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376. ACM, Pittsburgh (2006), doi:10.1145/1143844.1143891
Williams, R.: Some observations on the use of the extended Kalman Filter as a recurrent network learning algorithm. Technical Report NU-CCS-92-1, Northeastern University, Boston, MA (1992)
Haykin, S.: Neural Networks, 2nd edn. Prentice Hall, Upper Saddle River (1999)
Cernansky, M.: Matlab functions for training recurrent neural networks RTRL-EKF (2008), http://www2.fiit.stuba.sk/~cernans/main/download.html (accessed January 2009)
Werbos, P.: Beyond regression: new tools for prediction and analysis of the behavioral sciences. PhD Thesis, Cambridge, MA (1974)
Rumelhart, D., Hinton, E., Williams, R.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. I. Bradford Books, Cambridge (1986)
Čerňanský, M.: Training Recurrent Neural Network Using Multistream Extended Kalman Filter on Multicore Processor and Cuda Enabled Graphic Processor Unit. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 381–390. Springer, Heidelberg (2009)
Ralaivola, L., d’Alché-Buc, F.: Nonlinear Time Series Filtering, Smoothing and Learning using the Kernel Kalman Filter. Technical Report, Universite Pierre et Marie Curie, Paris France (2004)
Alanis, A., Sanchez, E., Loukianov, A.: Discrete-time adaptive backstepping nonlinear control via high-order neural networks. IEEE Transactions on Neural Networks 18(4), 1185–1195 (2007)
Prokhorov, D.: Toyota prius hev neurocontrol and diagnostics. Neural Networks 21, 458–465 (2008)
García-Pedrero, A.: Arquitectura neuronal apoyada en señales reconstruidas con wavelets para predicción de series de tiempo caóticas, M. Sc. Thesis, INAOE, Tonantzintla, Puebla (2009) (in spanish)
Doka, K.: Handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge (2002)
Kachenoura, A., Albera, L., Senhadji, L., Comon, P.: ICA: A Potential Tool for BCI Systems. IEEE Signal Processing Magazine, 57–68 (January 2008)
Keralapura, M., Pourfathi, M., Sirkeci-Mergen, B.: Impact of Contrast Functions in Fast-ICA on Twin ECG Separation. IAENG International Journal of Computer Science 38(1), 38–47 (2011)
Keirn, Z.A., Aunon, J.I.: A new mode of communication between man and his surroundings. IEEE Trans. Biomed. Eng. 37(12), 1209–1214 (1990)
Cawley, G.C.: Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs. In: Proceedings of the International Joint Conference on Neural Networks, Vancouver, Canada, pp. 1661–1668 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Morales-Flores, E., Ramírez-Cortés, J.M., Gómez-Gil, P., Alarcón-Aquino, V. (2013). Brain Computer Interface Development Based on Recurrent Neural Networks and ANFIS Systems. In: Melin, P., Castillo, O. (eds) Soft Computing Applications in Optimization, Control, and Recognition. Studies in Fuzziness and Soft Computing, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35323-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-35323-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35322-2
Online ISBN: 978-3-642-35323-9
eBook Packages: EngineeringEngineering (R0)