[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Games with Ambiguous Payoffs and Played by Ambiguity and Regret Minimising Players

  • Conference paper
AI 2012: Advances in Artificial Intelligence (AI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7691))

Included in the following conference series:

Abstract

In real life games, a player’s belief about the consequence of a strategy is often ambiguous due to out-of-control factors in the environment where the games are played. However, existing work cannot handle this situation. To address the issue, we introduce a new kind of games, called ambiguous games, and incorporate human cognitive factors of ambiguity aversion and minimising regret to propose a concept of solution to such a game. Moreover, we also study how ambiguity degrees of belief about payoffs impact the outcomes of a game, and find the condition under which a player should release more or less ambiguous information to his opponents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bade, S.: Electoral Competition with Uncertainty Averse Parties. Games and Economic Behavior 72(1), 12–29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Clemente, M., Fernandez, F.R., Puerto, J.: Pareto-Optimal Security Strategies in Matrix Games with Fuzzy Payoffs. Fuzzy Sets and Systems 176(1), 36–45 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dubois, D., Prade, H.: A Note on Measures of Specificity for Fuzzy Sets. International Journal of General Systems 10(4), 279–283 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ellsberg, D.: Risk, Ambiguous, and the Savage Axioms. Quarterly Journal of Economics 75(4), 643–669 (1961)

    Article  Google Scholar 

  5. Gintis, H.: The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  6. Gurnani, H., Shi, M.: A Bargaining Model for a First-Time Interaction under Asymmetric Beliefs of Supply Reliability. Management Science 56(2), 865–880 (2006)

    Article  Google Scholar 

  7. Halpern, J.Y., Pass, R.: Iterated Regret Minimization: A New Solution Concept. Games and Economic Behavior 74(1), 184–207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harsanyi, J.C.: Games with Incomplete Information Played by “Bayesian” Players, Part I. The Basic Model. Management Science 3(14), 159–182 (1967)

    Article  MathSciNet  Google Scholar 

  9. Kozhan, R.: Non-Additive Anonymous Games. International Journal of Game Theory 40(2), 215–230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Larbani, M.: Solving Bimatrix Games with Fuzzy Payoffs by Introducing Nature as a Third Player. Fuzzy Sets and Systems 160(5), 657–666 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Levi, I.: Why Indeterminate Probability Is Rational. Journal of Applied Logic 7(4), 364–376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, C., Zhang, Q.: Nash Equilibrium for Fuzzy Non-Cooperative Games. Fuzzy Sets and Systems 176(1), 46–55 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mallozzi, L., Sclazo, V., Tijs, S.: Fuzzy Interval Cooperative Games. Fuzzy Sets and Systems 165(1), 98–105 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, W., Xiong, W., Luo, X.: A D-S Theory Based AHP Decision Making Approach with Ambiguous Evaluations of Multiple Criteria. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 297–311. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Mertens, J.F., Neyman, A.: Stochastic Games. International Journal of Game Theory 10(2), 53–66 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Myerson, R.B.: Refinements of the Nash Equilibrium Concept. International Journal of Game Theory 15(2), 133–154 (1978)

    Google Scholar 

  17. Nash, J.: Non-Cooperative Games. The Annals of Mathematics 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rahwan, T., Michalak, T., Wooldridge, M., Jennings, N.R.: Anytime Coalition Structure Generation in Multi-Agent Systems with Positive or Negative Externalities. Artificial Intelligence 186, 95–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rothe, J.: Uncertainty Aversion and Equilibrium in Normal Form Games (2010), http://eprints.lse.ac.uk/37542/1/Uncertainty_aversion_and_equilibrium_in_normal_form_gameslsero.pdf

  20. Selten, R.: A Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games. International Journal of Game Theory 4(1), 25–55 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  22. Snow, A.: Amgibuity and the Value of Information. Journal of Risk and Uncertainty 40(2), 133–145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Strat, T.M.: Decision Analysis Using Belief Functions. International Journal of Approximate Reasoning 4(5-6), 391–418 (1990)

    Article  MATH  Google Scholar 

  24. Xiong, W., Luo, X., Ma, W.: An Expected Utility Interval Theory for Decision-Making under Uncertainty of Ambiguity: To Avoid Ambiguity and Minimise Regret. Fuzzy Sets and Systems. Technique Report, Institute of Logic and Cognition, Sun Yatsen Univerisity (submitted 2012)

    Google Scholar 

  25. Zorich, V.A.: Mathematical Analysis I. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiong, W., Luo, X., Ma, W. (2012). Games with Ambiguous Payoffs and Played by Ambiguity and Regret Minimising Players. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35101-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35100-6

  • Online ISBN: 978-3-642-35101-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics