[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimistic Agents Are Asymptotically Optimal

  • Conference paper
AI 2012: Advances in Artificial Intelligence (AI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7691))

Included in the following conference series:

  • 3563 Accesses

Abstract

We use optimism to introduce generic asymptotically optimal reinforcement learning agents. They achieve, with an arbitrary finite or compact class of environments, asymptotically optimal behavior. Furthermore, in the finite deterministic case we provide finite error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auer, P., Ortner, R.: Logarithmic online regret bounds for undiscounted reinforcement learning. In: Proceedings of NIPS 2006, pp. 49–56 (2006)

    Google Scholar 

  2. Blackwell, D., Dubins, L.: Merging of Opinions with Increasing Information. The Annals of Mathematical Statistics 33(3), 882–886 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Doob, J.: Stochastic processes. Wiley, New York (1953)

    MATH  Google Scholar 

  4. Even-Dar, E., Kakade, S., Mansour, Y.: Reinforcement learning in pomdps without resets. In: Proceedings of IJCAI 2005, pp. 690–695 (2005)

    Google Scholar 

  5. Hutter, M.: Universal Articial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin (2005)

    Google Scholar 

  6. Hutter, M.: Discrete MDL predicts in total variation. In: Advances in Neural Information Processing Systems, NIPS 2009, vol. 22, pp. 817–825 (2009)

    Google Scholar 

  7. Kearns, M.J., Singh, S.: Near-optimal reinforcement learning in polynomial time. In: Proceedings of the 15nd International Conference on Machine Learning (ICML 1998), pp. 260–268 (1998)

    Google Scholar 

  8. Lattimore, T., Hutter, M.: Asymptotically Optimal Agents. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925, pp. 368–382. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Lattimore, T., Hutter, M.: Time Consistent Discounting. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925, pp. 383–397. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Lattimore, T., Hutter, M.: PAC Bounds for Discounted MDPs. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS, vol. 7568, pp. 320–334. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Maillard, O.-A., Munos, R., Ryabko, D.: Selecting the state-representation in reinforcement learning. In: Advances in Neural Information Processing Systems (NIPS 2011), vol. 24, pp. 2627–2635 (2011)

    Google Scholar 

  12. Orseau, L.: Optimality Issues of Universal Greedy Agents with Static Priors. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) Algorithmic Learning Theory. LNCS, vol. 6331, pp. 345–359. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Ryabko, D., Hutter, M.: On the possibility of learning in reactive environments with arbitrary dependence. Theor. C.S. 405(3), 274–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Englewood Cliffs (2010)

    Google Scholar 

  15. Rudin, W.: Principles of mathematical analysis. McGraw-Hill (1976)

    Google Scholar 

  16. Strehl, A., Littman, M.: A theoretical analysis of model-based interval estimation. In: Proceedings of ICML 2005, pp. 856–863 (2005)

    Google Scholar 

  17. Strehl, A., Littman, M.: A theoretical analysis of model-based interval estimation. In: Proceedings of ICML 2005, pp. 856–863 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sunehag, P., Hutter, M. (2012). Optimistic Agents Are Asymptotically Optimal. In: Thielscher, M., Zhang, D. (eds) AI 2012: Advances in Artificial Intelligence. AI 2012. Lecture Notes in Computer Science(), vol 7691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35101-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35101-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35100-6

  • Online ISBN: 978-3-642-35101-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics