[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Solving Graph Coloring Problem by Fuzzy Clustering-Based Genetic Algorithm

  • Conference paper
Simulated Evolution and Learning (SEAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7673))

Included in the following conference series:

Abstract

The graph coloring problem is one of famous combinatorial optimization problems. Some researchers attempted to solve combinatorial optimization problem with evolutionary algorithm, which can find near optimal solution based on the evolution mechanism of the nature. However, it sometimes requires too much cost to evaluate fitness of a large number of individuals in the population when applying the GA to the real world problems. This paper attempts to solve graph coloring problem using a fuzzy clustering based evolutionary approach to reduce the cost of the evaluation. In order to show the feasibility of the method, some experiments with other alternative methods are conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Omari, H.A., Sabri, K.E.: New graph coloring algorithms. J. Mathematics and Statistics 2(4), 439–441 (2006)

    Article  MATH  Google Scholar 

  2. Brelaz, D.: New methods to color vertices of a graph. Communcations of ACM 22, 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hertz, A., De Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Freisleben, B., Merez, P.: New Genetic Local Search Operators for the Traveling Salesman Problem. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 890–899. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Merez, P., Freisleben, B.: A genetic local search approach to the quadratic assignment problem. In: 7th International Conference on Genetic Algorithms, pp. 465–472 (1997)

    Google Scholar 

  6. Falkenauer, E.: A hybrid grouping genetic algorithm for bin-packing. J. Heuristics 2(1), 5–30 (1996)

    Article  Google Scholar 

  7. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Annals of Operations Research 63, 437–463 (1995)

    Article  Google Scholar 

  8. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization - Algorithms and Complexity. Prentice Hall (1982)

    Google Scholar 

  9. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation: part ii, graph coloring and number partitioning. Operations Research 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  10. Gose, E., Johnsonbaugh, R., Jost, S.: Pattern Recognition and Image Analysis. Prentice Hall (1996)

    Google Scholar 

  11. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press (1973)

    Google Scholar 

  12. Fukunaka, K.: Introduction to Statistical Pattern Analysis. Academic Press (1990)

    Google Scholar 

  13. Haritigan, J.A.: Clustering Algorithms. John Wiley & Sons (1975)

    Google Scholar 

  14. Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. John Wiley & Sons (1999)

    Google Scholar 

  15. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. of Pattern Analysis and Machine Intelligence, PAMI-13(8), 841-847 (1991)

    Article  Google Scholar 

  16. Chams, M., Hertz, A., De Werra, D.: Some experiments with simulated annealing for coloring graphs. European Journal of Operational Research 32, 260–266 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lotfi, V., Sarin, S.: A graph coloring algorithm for large scale scheduling problems. Computers & Operations Research 13(1), 27–32 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klotz, W.: Graph coloring algorithms. IEICE Trans. Information and Systems 5, 1–9 (2002)

    Google Scholar 

  19. Porumbel, D.C., Hao, J.-K., Kuntz, P.: Diversity Control and Multi-Parent Recombination for Evolutionary Graph Coloring Algorithms. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS, vol. 5482, pp. 121–132. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Eiben, A.E., Van Der Hauw, J.K., Van Hemer, J.I.: Graph coloring with adaptive evolutionary algorithms. J. of Heuristics 4(1), 25–46 (1998)

    Article  MATH  Google Scholar 

  21. Costa, D., Hertz, A., Dubuis, O.: Embedding a sequential procedure within an evolutionary algorithms for coloring problems in graphs. J. of Heuristics 1(1), 105–128 (1995)

    Article  MATH  Google Scholar 

  22. Jin, Y., Sendhoff, B.: Reducing Fitness Evaluations Using Clustering Techniques and Neural Network Ensembles. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 688–699. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Kim, H.-S., Cho, S.-B.: An efficient genetic algorithms with less fitness evaluation by clustering. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 887–894. IEEE (2001)

    Google Scholar 

  24. Yoo, S.-H., Cho, S.-B.: Partially Evaluated Genetic Algorithm Based on Fuzzy c-Means Algorithm. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 440–449. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press (1981)

    Google Scholar 

  26. Chen, X.S., Ong, Y.S., Lim, M.H., Tan, K.C.: A Multi-Facet Survey on Memetic Computation. IEEE Transactions on Evolutionary Computation 15(5), 591–607 (2011)

    Article  Google Scholar 

  27. Ong, Y.S., Lim, M.H., Chen, X.S.: Research Frontier: Memetic Computation - Past, Present & Future. IEEE Computational Intelligence Magazine 5(2), 24–36 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, YS., Cho, SB. (2012). Solving Graph Coloring Problem by Fuzzy Clustering-Based Genetic Algorithm. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan, P.N. (eds) Simulated Evolution and Learning. SEAL 2012. Lecture Notes in Computer Science, vol 7673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34859-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34859-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34858-7

  • Online ISBN: 978-3-642-34859-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics