[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Data-Driven Modeling of BOLD Drug Response Curves Using Gaussian Process Learning

  • Conference paper
Machine Learning and Interpretation in Neuroimaging

Abstract

This paper presents a data-driven approach for modeling the temporal profile of pharmacological magnetic resonance imaging (phMRI) data, in which the blood oxygen level-dependent (BOLD) response to an acute drug challenge is measured. To date, this type of data have typically been analysed using general linear models applied to each voxel individually, an approach that requires a pre-defined model of the expected response to the pharmacological stimulus. Previous approaches have defined this model using pharmacokinetic profiles, phMRI data from pilot studies, cognitive or physiological variables that have been acquired during the experiment or a simple pre-post boxcar profile. In contrast, the approach presented here is data-driven; a basis function is fitted to the data in a Bayesian framework using Gaussian processes. This method outperforms two previous multivariate approaches to fMRI analysis while also providing information about the shape of the BOLD response and hence, increasing the model interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leslie, R.A., James, M.F.: Pharmacological magnetic resonance imaging: a new application for functional mri. Trends in Pharmacological Sciences 21(8), 314–318 (2000)

    Article  Google Scholar 

  2. Pendse, G.V., Schwarz, A.J., Baumgartner, R., Coimbra, A., Upadhyay, J., Borsook, D., Becerra, L.: Robust, unbiased general linear model estimation of phMRI signal amplitude in the presence of variation in the temporal response profile. Journal of Magnetic Resonance Imaging: JMRI 31(6), 1445–1457 (2010)

    Article  Google Scholar 

  3. Cole, P.E., Schwarz, A.J., Schmidt, M.E.: Applications of imaging biomarkers in the early clinical development of central nervous system therapeutic agents. Clin. Pharmacol. Ther. 91(2), 315–20 (2012)

    Google Scholar 

  4. Whitcher, B., Schwarz, A.J., Barjat, H., Smart, S.C., Grundy, R.I., James, M.F.: Wavelet-based cluster analysis: data-driven grouping of voxel time courses with application to perfusion-weighted and pharmacological mri of the rat brain. Neuroimage 24(2), 281–295 (2005)

    Article  Google Scholar 

  5. Schwarz, A.J., Whitcher, B., Gozzi, A., Reese, T., Bifone, A.: Study-level wavelet cluster analysis and data-driven signal models in pharmacological mri. Journal of Neuroscience Methods 159(2), 346–360 (2007)

    Article  Google Scholar 

  6. Littlewood, C.L., Jones, N., O’Neill, M.J., Mitchell, S.N., Tricklebank, M., Williams, S.C.R.: Mapping the central effects of ketamine in the rat using pharmacological mri. Psychopharmacology 186(1), 64–81 (2006)

    Article  Google Scholar 

  7. Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X.R., Just, M., Newman, S.: Learning to decode cognitive states from brain images. Machine Learning 57(1-2), 145–175 (2004)

    Article  MATH  Google Scholar 

  8. Mourão-Miranda, J., Friston, K.J., Brammer, M.J.: Dynamic discrimination analysis: a spatial-temporal svm. Neuroimage 36(1), 88–99 (2007)

    Article  Google Scholar 

  9. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. MIT Press (2006)

    Google Scholar 

  10. Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D., Heninger, G.R., Bowers Jr., M.B., Charney, D.S.: Subanesthetic effects of the noncompetitive nmda antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry 51(3), 199–214 (1994)

    Article  Google Scholar 

  11. Madsen, M.T.: A simplified formulation of the gamma variate function. Physics in Medicine and Biology 37(7), 1597 (1992)

    Article  Google Scholar 

  12. Bishop, C.M.: Pattern recognition and machine learning. Information science and statistics. Springer, New York (2006)

    MATH  Google Scholar 

  13. Golub, G.H., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables are separate. Society for Industrial and Applied Mathematics 10(2), 413–432 (1973)

    MATH  Google Scholar 

  14. Absalom, A.R., Lee, M., Menon, D.K., Sharar, S.R., De Smet, T., Halliday, J., Ogden, M., Corlett, P., Honey, G.D., Fletcher, P.C.: Predictive performance of the domino, hijazi, and clements models during low-dose target-controlled ketamine infusions in healthy volunteers. British Journal of Anaesthesia 98(5), 615–623 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doyle, O.M., Mehta, M.A., Brammer, M.J., Schwarz, A.J., De Simoni, S., Marquand, A.F. (2012). Data-Driven Modeling of BOLD Drug Response Curves Using Gaussian Process Learning. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics