Abstract
One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area (”the functional fingerprint”) is closely related to its anatomical connections (”the connectional fingerprint”) and, hence, a segregated cortical area may be characterized by a highly coherent connectivity pattern. Existing clustering techniques in the context of connectivity-based cortex parcellation are usually exploratory. We therefore advocate an information-theoretic framework for connectivity-based cortex parcellation which avoids many assumptions imposed by previous methods. Clustering is based upon maximizing connectivity information while allowing noise in the data to vote for the optimal number of cortical subunits. The automatic parcellation of the inferior frontal gyrus together with the precentral gyrus reveals cortical subunits consistent with previous studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amunts, K., Lenzen, M., Friederici, A., Schleicher, A., Morosan, P., Palomero-Gallagher, N., Zilles, K.: Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol. 8 (2010)
Anwander, A., Tittgemeyer, M., von Cramon, D., Friederici, A., Knösche, T.: Connectivity-based parcellation of broca’s area. Cerebral Cortex 17, 816–825 (2007)
Buhmann, J.: Information theoretic model validation for clustering. In: International Symposium on Information Theory (2010)
Buhmann, J., Chehreghani, M., Frank, M., Streich, A.P.: Information theoretic model selection for pattern analysis. In: Journal of Machine Learning Research: Workshop and Conference Proceedings (2011)
Geyer, S., Matelli, M., Luppino, G., Zilles, K.: Functional neuroanatomy of the primate isocortical motor system. Anat. Embryol. 202, 443–474 (2000)
Gorbach, N., Melzer, C., Schütte, C., Amunts, K., Douglas, T., Tittgemeyer, M.: Hierarchical clustering for connectivity-based cortex parcellation. In: 16th Annual Meeting of the Organization for Human Brain Mapping (2010)
Gorbach, N., Schütte, C., Melzer, C., Goldau, M., Sujazow, O., Jitsev, J., Douglas, T., Tittgemeyer, M.: Hierarchical information-based clustering for connectivity-based cortex parcellation. Frontiers in Neuroinformatics 5 (2011)
Hilgetag, C., Burns, G., O’Neill, M., Scannell, J., Young, M.: Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Phil. Trans. Royal Soc. B 355, 91–110 (2000a)
Hofmann, T., Buhmann, J.: Pairwise data clustering by deterministic annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 1–14 (1997)
Jbabdi, S., Woolrich, M.W., Behrens, T.E.J.: Multiple-subjects connectivity-based parcellation using hierarchical dirichlet process mixture models. NeuroImage 44(2), 373–384 (2009)
Johansen-Berg, H., Behrens, T., Robson, M., Drobnjak, I., Rushworth, M., Brady, M., Smith, S., Higham, D., Matthews, P.: Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. PNAS 101, 13335–13340 (2004)
Klein, J., Behrens, T., Robson, M., Mackay, C., Higham, D., Johansen-Berg, H.: Connectivity-based parcellation of human cortex using diffusion mri: Establishing reproducibility, validity and observer independence in ba 44/45 and sma/pre-sma. NeuroImage 34, 204–211 (2007)
Nanetti, L., Cerliani, L., Gazzola, V., Renken, R., Keysers, C.: Group analyses of connectivity-based cortical parcellation using repeated k-means clustering. NeuroImage 47, 1666–1677 (2009)
Schubotz, R., Anwander, A., Knösche, T., von Cramon, D., Tittgemeyer, M.: Anatomical and functional parcellation of the human lateral premotor cortex. NeuroImage 50, 369–408 (2010)
Slonim, N.: The Information Bottleneck: Theory and Applications. Ph.D. thesis, Hebrew University (2002)
Stephan, K., Hilgetag, C., Burns, G., O’Neill, M., Young, M., Kötter, R.: Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil. Trans. Royal Soc. B 355, 111–126 (2000)
Still, S., Bialek, W.: How many clusters? an information-theoretic prespective. Neural Computation 16, 2483–2506 (2004)
Tishby, N., Pereira, F., Bialek, W.: The information bottleneck method. In: The 37th Annual Allerton Conference on Communication, Control and Computing (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gorbach, N.S., Siep, S., Jitsev, J., Melzer, C., Tittgemeyer, M. (2012). Information-Theoretic Connectivity-Based Cortex Parcellation. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-34713-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34712-2
Online ISBN: 978-3-642-34713-9
eBook Packages: Computer ScienceComputer Science (R0)