[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Immune Algorithm for Bitmap Join Indexes

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7665))

Included in the following conference series:

Abstract

Bitmap join indexes are designed to prejoin the facts and dimension tables in data warehouses modeled by a star schema. They are defined on the fact table using attributes which belong to one or many dimension tables. The index selection process has become an important issue regarding the complexity of the search space to explore. Thus, the indexes can be defined on several attributes from several dimension tables (that may contain hundreds of attributes). However, only a few selection algorithms were proposed. In this article, we present a bitmap join indexes selection approach based on artificial immune algorithm. An experimental study was conducted on the dataset generated from APB-1 benchmark in order to compare the artificial immune algorithm with other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kimball, R., Strehlo, K.: Why decision support fails and how to fix it. SIGMOD Record 24(3), 92–97 (1995)

    Article  Google Scholar 

  2. Comer, D.: The ubiquitous b-tree. ACM Comput. Surv. 11(2), 121–137 (1979)

    Article  MATH  Google Scholar 

  3. Valduriez, P.: Join indices. ACM Transactions on Database Systems 12(2), 218–246 (1987)

    Article  Google Scholar 

  4. Bellatreche, L., Boukhalfa, K., Mohania, M.: Pruning Search Space of Physical Database Design. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 479–488. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Chan, C.Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 355–366 (June 1998)

    Google Scholar 

  6. Red Brick Systems Inc., Star schema processing for complex queries. White Paper (1997)

    Google Scholar 

  7. O’Neil, P., Graefe, G.: Multi-table joins through bitmapped join indices. SIGMOD Record 24(3), 8–11 (1995)

    Article  Google Scholar 

  8. Aouiche, K., Boussaid, O., Bentayeb, F.: Automatic Selection of Bitmap Join Indexes in Data Warehouses, pp. 64–73 (2005)

    Google Scholar 

  9. Boukhalfa, K., Bellatreche, L., Ziani, B.: Index de jointure binaires: Stratgies de slection et etude de performances. In: Journe Francophone sur les Entrepts de donnes et l’Analyse en ligne (EDA 2010). Revue des Nouvelles Technologies (2010)

    Google Scholar 

  10. Bellatreche, L., Boukhalfa, K.: Yet Another Algorithms for Selecting Bitmap Join Indexes. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 105–116. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Bellatreche, L., Missaoui, R., Necir, H., Drias, H.: A data mining approach for selecting bitmap join indices. Journal of Computing Science and Engineering 2(1), 206–223 (2008)

    Google Scholar 

  12. Stöhr, T., Martens, H., Rahm, E.: Multidimensional database allocation for parallel data warehouses. In: International Conference on Very Large Databases, pp. 273–284 (2000)

    Google Scholar 

  13. Bouchakri, R., Bellatreche, L., Boukhalfa, K.: Slection statique et incrmentale des index de jointure binaires multiples. In: Journe Francophones sur les Entrepts de donnes et l’Analyse en ligne (EDA 2011). Revue des Nouvelles Technologies RNTI, France (2011)

    Google Scholar 

  14. Farmer, J., Packard, N., Perelson, A.: The immune system, adaptation and machine learning. Physica 22D, 187–204 (1986)

    Google Scholar 

  15. Ishida, Y.: Immunity-Based-Systems: A Design Perspective. Springer (2004)

    Google Scholar 

  16. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: IEEE Symposium on Research in Security and Privacy (1994)

    Google Scholar 

  17. De Castro, L., Von Zuben, F.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Intelligence Systems, 239–251 (2002)

    Google Scholar 

  18. Timmis, J., Neal, M., Hunt, J.: An artificial immune system for data analysis. Knowledge Based Systems 14(3-4), 121–130 (2000)

    Article  Google Scholar 

  19. Dasgupta, D., Forrest, S.: Novelty detection in time series data using ideas from immunology. In: 5th International Conference on Intelligent Systems (1996)

    Google Scholar 

  20. Ishida, Y.: An Immune Network Model and its Applications to Process Diagnosis Systems and Computers (1993)

    Google Scholar 

  21. Hunt, J., Cooke, D., Holstein, H.: Case memory and retrieval based on the immune system. In: International Conference on Case Based Reasoning (1995)

    Google Scholar 

  22. Bersini, H.: Immune network and adaptative control. In: First European Conference on Artificial Life (1991)

    Google Scholar 

  23. Nasaroui, O., Dasgupta, D., Gonzlez, F.: A novel artificial immune system approach to robust datamining. In: Genetic and Evolutionary Computation Conference (2002)

    Google Scholar 

  24. Council, O.: Apb-1 olap benchmark, release ii (1998), http://www.olapcouncil.org/research/bmarkly.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gacem, A., Boukhalfa, K. (2012). Immune Algorithm for Bitmap Join Indexes. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34487-9_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34487-9_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34486-2

  • Online ISBN: 978-3-642-34487-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics