[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimization of Fuzzy Systems Using Group-Based Evolutionary Algorithm

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7665))

Included in the following conference series:

  • 3301 Accesses

Abstract

This paper proposes a group-based evolutionary algorithm (GEA) for the fuzzy system (FS) optimization. Initially, we adopt an entropy measure method to determine the number of rules. Fuzzy rules are automatically generated from training data by entropy measure. Subsequently, the GEA is performed to optimize all the free parameters for the FS design. In the evolution process, a FS is coded as an individual. All individuals based on their performance are partitioned into a superior group and an inferior group. The superior group, which is composed of individuals with better performance, uses a global evolution operation to search potential individuals. In the inferior group, individuals with a worse performance employ the local evolution operation to search better individuals near the current best individual. Finally, the proposed FS with GEA model (FS-GEA) is applied to time series forecasting problem. Results show that the proposed FS-GEA model obtains better performance than other algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lin, C.T., Lee, C.S.G.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  2. Han, M.F., Lin, C.T., Chang, J.Y.: A Compensatory Neurofuzzy System with Online Constructing and Parameter Learning. In: Proc. of 2010 IEEE International Conference on Syst., Man, and Cybern., pp. 552–556 (2010)

    Google Scholar 

  3. Chen, C.H., Lin, C.J., Lin, C.T.: A Functional-Link-Based Neurofuzzy Network for Nonlinear System Control. IEEE Trans. Fuzzy Syst. 16, 1362–1378 (2008)

    Article  Google Scholar 

  4. Juang, C.F., Chang, P.H.: Designing Fuzzy Rule-Based Systems Using Continuous Ant Colony Optimization. IEEE Trans. Fuzzy Syst. 18, 138–149 (2010)

    Article  Google Scholar 

  5. Sanchez, E., Shibata, T., Zadeh, L.A.: Genetic Algorithms and Fuzzy Logic Systems: Soft Computing Perspectives. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  6. Chou, C.H.: Genetic Algorithm-Based Optimal Fuzzy Controller Design in The Linguistic Space. IEEE Trans. Fuzzy Syst. 14, 372–385 (2006)

    Article  Google Scholar 

  7. Juang, C.F., Hsiao, C.M., Hsu, C.H.: Hierarchical Cluster-Based Multispecies Particle-Swarm Optimization for Fuzzy-System Optimization. IEEE Trans. Fuzzy Syst. 18, 14–26 (2010)

    Article  Google Scholar 

  8. Juang, C.F.: A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Network Design. IEEE Trans. Syst., Man, Cybern. B 34, 997–1006 (2004)

    Article  Google Scholar 

  9. Li, C., Chiang, T.W.: Complex Fuzzy Model with PSO-RLSE Hybrid Learning Approach to Function Approximation. International Journal of Intelligent Information and Database Systems 5, 409–430 (2011)

    Article  Google Scholar 

  10. Lin, C.J., Lee, C.Y.: Non-Linear System Control Using A Recurrent Fuzzy Neural Network Based on Improved Particle Swarm Optimization. International Journal of Systems Science 41, 381–395 (2010)

    Article  Google Scholar 

  11. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 14, 4–31 (2011)

    Article  Google Scholar 

  12. Lin, C.T., Han, M.F., Lin, Y.Y., Liao, S.H., Chang, J.Y.: Neuro-Fuzzy System Design Using Differential Evolution with Local Information. In: 2011 IEEE International Conference on Fuzzy Systems, pp. 1003–1006 (2011)

    Google Scholar 

  13. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Trans. Evol. Comput. 10, 646–659 (2006)

    Article  Google Scholar 

  14. Han, M.F., Lin, C.T., Chang, J.Y.: Group-Based Differential Evolution for Numerical Optimization Problems. International Journal of Innovative Computing, Information and Control 9, 2 (2013)

    Google Scholar 

  15. Chen, C.H., Lin, C.J., Lin, C.T.: Nonlinear System Control Using Adaptive Neural Fuzzy Networks Based on a Modified Differential Evolution. IEEE Trans. Syst. Man Cybern. Part C, Appl. Rev., 459–473 (2009)

    Google Scholar 

  16. Lin, C.-J., Chen, C.-H., Lin, C.-T.: Efficient Self-Evolving Evolutionary Learning for Neurofuzzy Inference Systems. IEEE Trans. Fuzzy Syst. 16(6), 1476–1490 (2008)

    Article  Google Scholar 

  17. Lin, C.-J., Wu, C.-F., Lee, C.-Y.: Design of a Recurrent Functional Neural Fuzzy Network Using Modified Differential Evolution. International Journal of Innovative Computing, Information and Control 7(1), 669–683 (2011)

    MathSciNet  Google Scholar 

  18. Cho, K.B., Wang, B.H.: Radial Basis Function Based Adaptive Fuzzy Systems and Their Applications to System Identification. Fuzzy Sets Syst. 83, 325–339 (1996)

    Article  MathSciNet  Google Scholar 

  19. Kim, J., Kasabov, N.K.: HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamic systems. Neural Netw. 12, 1301–1319 (1999)

    Article  Google Scholar 

  20. Nauk, D., Kruse, R.: Neuro-Fuzzy Systems for Function Approximation. Fuzzy Sets Syst. 101, 261–271 (1999)

    Article  Google Scholar 

  21. Wu, S., Er, M.J.: Dynamic Fuzzy Neural Networks—A Novel Approach to Function Approximation. IEEE Trans. Syst., Man, Cybern. B 30, 358–364 (2000)

    Google Scholar 

  22. Karr, C.L.: Design of An Adaptive Fuzzy Logic Controller Using A Genetic Algorithm. In: Proc. 4th Conf. Genetic Algorithms, pp. 450–457 (1991)

    Google Scholar 

  23. Juang, C.F., Lin, J.Y., Lin, C.T.: Genetic Reinforcement Learning Through Symbiotic Evolution for Fuzzy Controller Design. IEEE Trans. Syst., Man, Cybern., Part B 30, 290–302 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, JY., Han, MF., Lin, CT. (2012). Optimization of Fuzzy Systems Using Group-Based Evolutionary Algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34487-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34487-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34486-2

  • Online ISBN: 978-3-642-34487-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics