[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Ecology-Based Heterogeneous Approach for Cooperative Search

  • Conference paper
Advances in Artificial Intelligence - SBIA 2012 (SBIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7589))

Included in the following conference series:

Abstract

The concept of optimization is present in several natural processes such as the evolution of species, the behavior of social groups and the ecological relationships of different animal populations. This work uses the concepts of habitats, ecological relationships and ecological successions to build a hybrid cooperative search algorithm, named ECO. The Artificial Bee Colony (ABC) and the Particle Swarm Optimization (PSO) algorithms were used in the experiments where benchmark mathematical functions were optimized. Results were compared with ABC and PSO running alone, and with both algorithms in a well known island model with ring topology, all running without the ecology concepts previously mentioned. The ECO algorithm performed better than the other approaches, especially as the dimensionality of the functions increase, possibly thanks to the ecological interactions (intra and inter-habitats) that enabled the co-evolution of populations. Results suggest that the ECO algorithm can be an interesting alternative for numerical optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Castro, L.N.: Fundamentals of natural computing: an overview. Physics of Life Reviews 4(1), 1–36 (2007)

    Article  MathSciNet  Google Scholar 

  2. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley, Chichester (2007)

    Book  Google Scholar 

  3. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. International Journal of Bio-Inspired Computation 3(1), 1–16 (2011)

    Article  Google Scholar 

  4. Begon, M., Townsend, C.R., Harper, J.L.: Ecology: from individuals to ecosystems, 4th edn. Blackwell Publishing, Oxford (2006)

    Google Scholar 

  5. May, R.M.C., McLean, A.R.: Theoretical Ecology: Principles and Applications. Oxford University Press, Oxford (2007)

    Google Scholar 

  6. El-Abd, M., Kamel, M.: A Taxonomy of Cooperative Search Algorithms. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 32–41. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Masegosa, A.D., Pelta, D., del Amo, I.G., Verdegay, J.L.: On the Performance of Homogeneous and Heterogeneous Cooperative Search Strategies. In: Krasnogor, N., Melián-Batista, M.B., Pérez, J.A.M., Moreno-Vega, J.M., Pelta, D.A. (eds.) NICSO 2008. SCI, vol. 236, pp. 287–300. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Parpinelli, R.S., Benítez, C.M.V., Lopes, H.S.: Parallel approaches for the artificial bee colony algorithm. In: Panigrani, B.K., Shi, Y., Lim, M. (eds.) Handbook of Swarm Intelligence: Concepts, Principles and Applications. Series: Adaptation, Learning, and Optimization, pp. 329–346. Springer, Berlin (2011)

    Google Scholar 

  9. Benítez, C.M.V., Parpinelli, R.S., Lopes, H.S.: Parallelism, hybridism and coevolution in a multi-level ABC-GA approach for the protein structure prediction problem. In: Concurrency and Computation: Practice and Experience (2011)

    Google Scholar 

  10. Parpinelli, R.S., Lopes, H.S.: An eco-inspired evolutionary algorithm applied to numerical optimization. In: Proceedings of the Third World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, pp. 473–478 (2011)

    Google Scholar 

  11. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation 214, 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Clerc, M.: Particle Swarm Optimization. ISTE Press (2006)

    Google Scholar 

  13. Blickle, T.: Tournament selection. In: Bäck, T., Fogel, D., Michalewicz, Z. (eds.) Evolutionary Computation, vol. 2, pp. 181–186. Institute of Physics, Bristol (2000)

    Google Scholar 

  14. Digalakis, J.G., Margaritis, K.G.: An experimental study of benchmarking functions for evolutionary algorithms. International Journal of Computer Mathematics 79(4), 403–416 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. LNCS, vol. 455. Springer (1990)

    Google Scholar 

  16. Mühlenbein, H., Schomisch, D., Born, J.: The parallel genetic algorithm as function optimizer. Parallel Computing 17(6-7), 619–632 (1991)

    Article  MATH  Google Scholar 

  17. Griewank, A.: Generalized descent for global optimization. Journal of Optimization Theory and Applications 34(1), 11–39 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cho, H., Olivera, F., Guikema, S.: A derivation of the number of minima of the Griewank function. Applied Mathematics and Computation 204(2), 694–701 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. The Computer Journal 3, 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  20. Clerc, M.: Standard PSO 2007, SPSO-07 (2007), http://www.particleswarm.info/Programs.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parpinelli, R.S., Lopes, H.S. (2012). An Ecology-Based Heterogeneous Approach for Cooperative Search. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds) Advances in Artificial Intelligence - SBIA 2012. SBIA 2012. Lecture Notes in Computer Science(), vol 7589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34459-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34459-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34458-9

  • Online ISBN: 978-3-642-34459-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics