Abstract
We propose a two-phased approach to learn pattern graphs, a powerful pattern language for complex, multivariate temporal data, which is capable of reflecting more aspects of temporal patterns than earlier proposals. The first phase aims at increasing the understandability of the graph by finding common substructures, thereby helping the second phase to specialize the graph learned so far to discriminate against undesired situations. The usefulness is shown on data from the automobile industry and the libras data set by taking the accuracy and the knowledge gain of the learned graphs into account.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basile, T.M.A., Di Mauro, N., Ferilli, S., Esposito, F.: Relational Temporal Data Mining for Wireless Sensor Networks. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS(LNAI), vol. 5883, pp. 416–425. Springer, Heidelberg (2009)
Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A pattern mining approach for classifying multivariate temporal data. In: Proc. IEEE Int. Conf. Bioinformatics BioMed, pp. 358–365 (2011)
Berlingerio, M., Pinelli, F., Nanni, M., Giannotti, F.: Temporal mining for interactive workflow data analysis. In: Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2009, pp. 109–118 (2009)
Frank, A., Asuncion, A.: UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences (2010)
Höppner, F.: Discovery of temporal patterns – learning rules about the qualitative behaviour of time series. In: Proc. of the 5th Europ. Conf. on Principles of Data Mining and Knowl. Discovery, pp. 192–203. Springer (2001)
Höppner, F., Peter, S., Berthold, M.R.: Enriching Multivariate Temporal Patterns with Context Information to Support Classification. In: Moewes, C., Nürnberger, A. (eds.) Computational Intelligence in Intelligent Data Analysis. SCI, vol. 445, pp. 195–206. Springer, Heidelberg (2013)
Mörchen, F.: Unsupervised pattern mining from symbolic temporal data. ACM SIGKDD Explorations Newsletter 9(1), 41–55 (2007)
Peter, S., Höppner, F., Berthold, M.R.: Pattern graphs: A knowledge-based tool for multivariate temporal pattern retrieval. In: Proc. IEEE Conf. Intelligent Systems. IEEE (2012)
Wang, J., Han, J.: Bide: Efficient mining of frequent closed sequences. In: Int. Conf on Data Engineering, pp. 79–90 (2004)
Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal of Computational Biology 1(4), 337–348 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peter, S., Höppner, F., Berthold, M.R. (2012). Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-34156-4_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34155-7
Online ISBN: 978-3-642-34156-4
eBook Packages: Computer ScienceComputer Science (R0)