[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval

  • Conference paper
Advances in Intelligent Data Analysis XI (IDA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7619))

Included in the following conference series:

Abstract

We propose a two-phased approach to learn pattern graphs, a powerful pattern language for complex, multivariate temporal data, which is capable of reflecting more aspects of temporal patterns than earlier proposals. The first phase aims at increasing the understandability of the graph by finding common substructures, thereby helping the second phase to specialize the graph learned so far to discriminate against undesired situations. The usefulness is shown on data from the automobile industry and the libras data set by taking the accuracy and the knowledge gain of the learned graphs into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basile, T.M.A., Di Mauro, N., Ferilli, S., Esposito, F.: Relational Temporal Data Mining for Wireless Sensor Networks. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS(LNAI), vol. 5883, pp. 416–425. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A pattern mining approach for classifying multivariate temporal data. In: Proc. IEEE Int. Conf. Bioinformatics BioMed, pp. 358–365 (2011)

    Google Scholar 

  3. Berlingerio, M., Pinelli, F., Nanni, M., Giannotti, F.: Temporal mining for interactive workflow data analysis. In: Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2009, pp. 109–118 (2009)

    Google Scholar 

  4. Frank, A., Asuncion, A.: UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences (2010)

    Google Scholar 

  5. Höppner, F.: Discovery of temporal patterns – learning rules about the qualitative behaviour of time series. In: Proc. of the 5th Europ. Conf. on Principles of Data Mining and Knowl. Discovery, pp. 192–203. Springer (2001)

    Google Scholar 

  6. Höppner, F., Peter, S., Berthold, M.R.: Enriching Multivariate Temporal Patterns with Context Information to Support Classification. In: Moewes, C., Nürnberger, A. (eds.) Computational Intelligence in Intelligent Data Analysis. SCI, vol. 445, pp. 195–206. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Mörchen, F.: Unsupervised pattern mining from symbolic temporal data. ACM SIGKDD Explorations Newsletter 9(1), 41–55 (2007)

    Article  Google Scholar 

  8. Peter, S., Höppner, F., Berthold, M.R.: Pattern graphs: A knowledge-based tool for multivariate temporal pattern retrieval. In: Proc. IEEE Conf. Intelligent Systems. IEEE (2012)

    Google Scholar 

  9. Wang, J., Han, J.: Bide: Efficient mining of frequent closed sequences. In: Int. Conf on Data Engineering, pp. 79–90 (2004)

    Google Scholar 

  10. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal of Computational Biology 1(4), 337–348 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peter, S., Höppner, F., Berthold, M.R. (2012). Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34156-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34155-7

  • Online ISBN: 978-3-642-34156-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics