Abstract
Literally thousands of articles on optical flow algorithms have been published in the past thirty years. Only a small subset of the suggested algorithms have been analyzed with respect to their performance. These evaluations were based on black-box tests, mainly yielding information on the average accuracy on test-sequences with ground truth. No theoretically sound justification exists on why this approach meaningfully and/or exhaustively describes the properties of optical flow algorithms. In practice, design choices are often made based on unmotivated criteria or by trial and error. This article is a position paper questioning current methods in performance analysis. Without empirical results, we discuss more rigorous and theoretically sound approaches which could enable scientists and engineers alike to make sufficiently motivated design choices for a given motion estimation task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Horn, B., Schunck, B.: Determining optical flow. In: Artificial Intelligence, vol. 17, pp. 185–204 (1981)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 1981 DARPA Image Understanding Workshop, pp. 121–130 (1981)
Barron, J.L., Fleet, D.J., Beauchemin, S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)
Otte, M., Nagel, H.: Optical Flow Estimation: Advances and Comparisons. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 51–60. Springer, Heidelberg (1994)
McCane, B., Novins, K., Crannitch, D., Galvin, B.: On benchmarking optical flow (2001), http://of-eval.sourceforge.net/
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: Proc. of the 11th International Conference of Computer Vision (ICCV 2007), pp. 1–8. IEEE (2007)
Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92(1), 1–31 (2011)
Christensen, H., Förstner, W.: Editorial performance characteristics of vision algorithms. Machine Vision and Applications 9(5), 215–218 (1997)
Haralick, R., Klette, R., Stiehl, S., Viergever, M.: Performance characterzation in computer vision (2000)
Clark, A., Courtney, P. (eds.): ICVS workshop on performance characterization and benchmarking of vision systems (1999)
Förstner, W.: 10 pros and cons against performance characterization of vision algorithms. In: Proc. of ECCV Workshop on Performance Characteristics of Vision Algorithms, pp. 13–29 (1996)
Maimone, M., Shafer, S.: A taxonomy for stereo computer vision experiments. In: Proc. of ECCV Workshop on Performance Characteristics of Vision Algorithms, pp. 59–79 (April 1996)
Matei, B., Meer, P., Tyler, D.: Performance assessment by resampling: rigid motion estimators. In: Proc. IEEE CS Workshop on Empirical Evaluation of Computer Vision Algorithms, Santa Barbara, California, pp. 72–95 (1998)
Klausmann, P., Fries, S., Willersinn, D., Stilla, U., Thönnessen, U.: Application-oriented assessment of computer vision algorithms. In: Handbook of Computer Vision and Applications, vol. 3, pp. 133–152 (1999)
Courtney, P., Thacker, N.: Performance characterisation in computer vision: The role of statistics in testing and design. In: Imaging and Vision Systems: Theory, Assessment and Applications. NOVA Science Books (2001)
Thacker, N., Lacey, A., Courtney, P., Rees, G.: An empirical design methodology for the construction of machine vision systems. In: Tutorial at ECCV, Copenhagen (2002)
Thacker, N.: Using quantitative statistics for the construction of machine vision systems. In: Proceedings of SPIE: Opto-Ireland 2002: Optical Metrology, Imaging, and Machine Vision, vol. 4877, pp. 1–15 (2003)
Thacker, N., Clark, A., Barron, J., Ross Beveridge, J., Courtney, P., Crum, W., Ramesh, V., Clark, C.: Performance characterization in computer vision: A guide to best practices. Computer Vision and Image Understanding 109(3), 305–334 (2008)
Luxen, M.: Performance evaluation in natural and controlled environments applied to feature extraction procedures. In: Proc. of 2004 ISPRS Congress. The International Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXV, Part B3, pp. 1061–1066 (2004)
Lucas, Y., Domingues, A., Driouchi, D., Treuillet, S.: Design of experiments for performance evaluation and parameter tuning of a road image processing chain. EURASIP Journal on Applied Signal Processing, 212 (2006)
Vogel, J., Schiele, B.: On Performance Characterization and Optimization for Image Retrieval. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 49–63. Springer, Heidelberg (2002)
Liang, J., Doermann, D., Li, H.: Camera-based analysis of text and documents: a survey. International Journal on Document Analysis and Recognition 7(2), 84–104 (2005)
Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys (CSUR) 35(4), 399–458 (2003)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys (CSUR) 38(4), 13 (2006)
Burfoot, D.: Notes on a new philosophy of empirical science. Arxiv preprint arXiv:1104.5466 (2011)
Burton, A., Radford, J.: Thinking in perspective: critical essays in the study of thought processes. Methuen (1978)
Haussecker, H., Spies, H.: Motion. In: Jähne, B., Haussecker, H., Geissler, P. (eds.) Handbook of Computer Vision and Applications, vol. 2, ch. 13. Academic Press (1999)
Warren, D., Strelow, E.: Electronic spatial sensing for the blind: contributions from perception, rehabilitation, and computer vision, vol. 99. Kluwer Academic Print on Demand (1985)
Raffel, M., Willert, C., Kompenhans, J.: Postprocessing of PIV data. In: Particle Image Velocimetry, ch. 6. Springer (1998)
Sellent, A., Eisemann, M., Magnor, M.: Two Algorithms for Motion Estimation from Alternate Exposure Images. In: Cremers, D., Magnor, M., Oswald, M.R., Zelnik-Manor, L. (eds.) Video Processing and Computational Video. LNCS, vol. 7082, pp. 25–51. Springer, Heidelberg (2011)
Maciaszek, L.: Requirements analysis and system design. Pearson Education (2007)
Kossiakoff, A., Sweet, W., Seymour, S., Biemer, S.: Systems engineering principles and practice, vol. 27. Wiley Online Library (2003)
Mikhail, E., Bethel, J., McGlone, J.: Introduction to modern photogrammetry, vol. 31. Wiley, New York (2001)
Hartley, R.I., Zisserman, A.: Multiple View Geometry. Cambridge University Press (2000)
Thormaehlen, T.: Zuverlässige schätzung der kamerabewegung aus einer bildfolge (2006)
Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a Cloudless Day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)
Guilherme, N., Avinash, C.: Vision for mobile robot navigation: A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)
Ohnishi, N., Imiya, A.: Featureless robot navigation using optical flow. Connection Science 17(1-2), 23–46 (2005)
Zitnick, C., Kang, S., Uyttendaele, M., Winder, S., Szeliski, R.: High-quality video view interpolation using a layered representation. ACM Transactions on Graphics (TOG) 23, 600–608 (2004)
Chen, S., Williams, L.: View interpolation for image synthesis. In: Proc. of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–288. ACM (1993)
Parsonage, P., Hilton, A., Starck, J.: Efficient dense reconstruction from video. In: Proceedings of the 8th European Conference on Visual Media Production (2011), http://www.cvmp-conference.org/2011-Papers
Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., Gross, M.: Nonlinear disparity mapping for stereoscopic 3d. ACM Transactions on Graphics (TOG) 29(4), 75 (2010)
Garbe, C., Jähne, B.: Reliable estimates of the sea surface heat flux from image sequences. Pattern Recognition, 194–201 (2001)
Barron, J., Liptay, A.: Measuring 3-d plant growth using optical flow. Bioimaging 5(2), 82–86 (1997)
Kähler, C., Sammler, B., Kompenhans, J.: Generation and control of tracer particles for optical flow investigations in air. Experiments in Fluids 33(6), 736–742 (2002)
Papadakis, N., Mémin, É., et al.: Variational assimilation of fluid motion from image sequence. SIAM Journal on Imaging Science 1(4), 343–363 (2008)
Berthe, A., Kondermann, D., Christensen, C., Goubergrits, L., Garbe, C., Affeld, K., Kertzscher, U.: Three-dimensional, three-component wall-PIV. Experiments in Fluids 48, 983–997 (2010)
Tropea, C., Yarin, A.L., Foss, J.F.: Springer Handbook of Experimental Fluid Mechanics. Springer (2007)
Fincham, A., Spedding, G.: Low cost, high resolution dpiv for measurement of turbulent fluid flow. Experiments in Fluids 23(6), 449–462 (1997)
Efros, A., Berg, A., Mori, G., Malik, J.: Recognizing action at a distance. In: Proc. of the 8th International Conference of Computer Vision (ICCV 2003), pp. 726–733. IEEE (2003)
Haag, M., Nagel, H.: Combination of edge element and optical flow estimates for 3d-model-based vehicle tracking in traffic image sequences. International Journal of Computer Vision 35(3), 295–319 (1999)
Wolf, W.: Key frame selection by motion analysis. In: Proc. of International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1996), vol. 2, pp. 1228–1231. IEEE (1996)
Sudhir, G., Lee, J.: Video annotation by motion interpretation using optical flow streams (1997)
Hauptmann, A., Gao, J., Yan, R., Qi, Y., Yang, J., Wactlar, H.: Automated analysis of nursing home observations. IEEE Pervasive Computing 3(2), 15–21 (2004)
Michels, M., Rojas, R., Landgraf, T.: A beehive monitoring system incorporating optical flow as a source of information (2011)
Lombardot, B., Luengo-Oroz, M., Melani, C., Faure, E., Santos, A., Peyrieras, N., Ledesma-Carbayo, M., Bourgine, P., de Neurobiologie Alfred Fessard, G., Yvette, F.: Evaluation of four 3d non rigid registration methods applied to early zebrafish development sequences. In: MIAAB MICCAI (2008)
Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research 155, 23–36 (2006)
Krajsek, K., Mester, R.: Wiener-Optimized Discrete Filters for Differential Motion Estimation. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 30–41. Springer, Heidelberg (2007)
Krajsek, K., Mester, R., Scharr, H.: Statistically Optimal Averaging for Image Restoration and Optical Flow Estimation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 466–475. Springer, Heidelberg (2008)
Stich, T., Linz, C., Wallraven, C., Cunningham, D., Magnor, M.: Perception-motivated interpolation of image sequences. ACM Transactions on Applied Perception (TAP) 8, 1–25 (2011), http://doi.acm.org/10.1145/1870076.1870079
Forstner, W.: Reliability analysis of parameter estimation in linear models with applications to mensuration problems in computer vision. Computer Vision, Graphics, and Image Processing 40(3), 273–310 (1987)
Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for optical flow. In: Proc. of the 13th International Conference of Computer Vision, ICCV 2011 (2011)
Becker, F., Lenzen, F., Kappes, J.H., Schnörr, C.: Variational recursive joint estimation of dense scene structure and camera motion from monocular high speed traffic sequences. In: Proc. of the 13th International Conference of Computer Vision, ICCV 2011 (2011)
Fleet, D.J., Jepson, A.: Computation of component image velocity from local phase information. International Journal on Computer Vision 5(1), 77–104 (1990)
Jähne, B., Haussecker, H., Geißler, P.E.: Handbook of Computer Vision and Application, vol. 2. Academic Press (1999)
Heeger, D.: Model for the extraction of image flow. Journal of the Optical Society of America 4(8), 1455–1471 (1987)
Kondermann, C., Mester, R., Garbe, C.: A Statistical Confidence Measure for Optical Flows. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 290–301. Springer, Heidelberg (2008)
Humayun, A., Mac Aodha, O., Brostow, G.: Learning to find occlusion regions. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2161–2168. IEEE (2011)
Bainbridge-Smith, R., Lane, A.: Measuring confidence in optical flow estimation. IET Electronics Letters 32(10), 882–884 (1996)
Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1995)
Zetzsche, C., Barth, E.: Fundamental limits of linear filters in the visual processing of two-dimensional signals. Vision Research 30(7), 1111–1117 (1990)
Kalkan, S., Calow, D., Felsberg, M., Worgotter, F., Lappe, M., Krüger, N.: Optic flow statistics and intrinsic dimensionality (2004)
Felsberg, M., Kalkan, S., Krüger, N.: Continuous dimensionality characterization of image structures. Image and Vision Computing 27(6), 628–636 (2009)
Kondermann, C., Kondermann, D., Garbe, C.S.: Postprocessing of Optical Flows Via Surface Measures and Motion Inpainting. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 355–364. Springer, Heidelberg (2008)
Kybic, J., Nieuwenhuis, C.: Bootstrap optical flow confidence and uncertainty measure. Computer Vision and Image Understanding 115(10), 1449–1462 (2011)
Black, M., Yacoob, Y., Jepson, A., Fleet, D.: Learning parameterized models of image motion. In: Proc. of IEEE Computer Siciety Conference on Computer Vision and Pattern Recognition (CVPR 1997), pp. 561–567 (1997)
Roth, S., Black, M.: On the spatial statistics of optical flow. In: Proc. of International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 42–49 (2005)
Sun, D., Roth, S., Lewis, J.P., Black, M.J.: Learning Optical Flow. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 83–97. Springer, Heidelberg (2008)
Mac Aodha, O., Brostow, G.J., Pollefeys, M.: Segmenting video into classes of algorithm-suitability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 1054–1061 (2010)
Gehrig, S., Scharwächter, T.: A real-time multi-cue framework for determining optical flow confidence. In: Proc. of the 13th International Conference of Computer Vision, ICCV 2011 (2011)
Amiaz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern Recogn. 40(9) (2007)
Scharr, H.: Optimal Filters for Extended Optical Flow. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 14–29. Springer, Heidelberg (2007)
Kondermann, D.: Modular Optical Flow Estimation with Applications to Fluid Dynamics. PhD thesis, University of Heidelberg (2009)
Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House (1999)
Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Real-Time Optic Flow Computation with Variational Methods, pp. 222–229. Springer, Heidelberg (2003)
Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Real-time optic flow computation with variational methods. IEEE Trans. of Image Processing 14(5), 608–615 (2005)
Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: Proc. of the British Machine Vision Conference (BMVC 2009), London, UK (September 2009)
Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion behaviour on synthetic and real-world stereo sequences, pp. 1–6 (2008)
Meister, S., Jähne, B., Kondermann, D.: Outdoor stereo camera system for the generation of real-world benchmark data sets. Optical Engineering 51 (2012)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Computer Vision and Pattern Recognition (CVPR), Providence, USA (June 2012)
Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion annotation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (2008)
Russell, B., Torralba, A., Murphy, K., Freeman, W.: Labelme: a database and web-based tool for image annotation. International Journal of Computer Vision 77(1), 157–173 (2008)
Meister, S.: A study on ground truth generation for optical flow. Master’s thesis, University of Heidelberg (2010)
Meister, S., Kondermann, D.: Real versus realistically rendered scenes for optical flow evaluation. In: Proceedings of 14th ITG Conference on Electronic Media Technology (2011)
Haeusler, R., Klette, R.: Benchmarking Stereo Data (Not the Matching Algorithms). In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 383–392. Springer, Heidelberg (2010)
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2011), vol. 2, p. 3 (2011)
Kaneva, B., Torralba, A., Freeman, W.: Evaluation of image features using a photorealistic virtual world. In: Proc. of the 13th International Conference of Computer Vision, ICCV 2011 (2011)
Beizer, B.: Black-box testing: techniques for functional testing of software and systems. John Wiley & Sons, Inc. (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kondermann, D. et al. (2012). On Performance Analysis of Optical Flow Algorithms. In: Dellaert, F., Frahm, JM., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds) Outdoor and Large-Scale Real-World Scene Analysis. Lecture Notes in Computer Science, vol 7474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34091-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-34091-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34090-1
Online ISBN: 978-3-642-34091-8
eBook Packages: Computer ScienceComputer Science (R0)