[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Structure vs. Efficiency of the Cross-Entropy Based Population Learning Algorithm for Discrete-Continuous Scheduling with Continuous Resource Discretisation

  • Chapter
Agent-Based Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 456))

Abstract

In the chapter, we consider the population learning algorithm (PLA2), earlier designed by the authors, and study how the interconnection topology and heterogeneity of the constituent modules influence its efficiency. PLA2 is a population- based approach which takes advantage of the features common to the social education system rather than to the evolutionary processes. The problem of scheduling nonpreemtable tasks on parallel identical machines under constraint on discrete resource and requiring, additionally, renewable continuous resource to minimize the schedule length is chosen as the problem to cope with. A continuous resource is divisible continuously and is allocated to tasks from given intervals in amounts unknown in advance. Task processing rate depends on the allocated amount of the continuous resource. To eliminate time consuming optimal continuous resource allocation, an NP-hard problem ΘZ with continuous resource discretisation is introduced and sub-optimally solved by PLA2. The PLA2’s island design can be easily transferred to an agent system with cooperating agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. De Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A Tutorial on the Cross-Entropy Method. Annals of Operations Research 134(1), 19–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Czarnowski, I., Gutjahr, W.J., Jędrzejowicz, P., Ratajczak, E., Skakovski, A., Wierzbowska, I.: Scheduling Multiprocessor Tasks in Presence of Correlated Failures. Central European Journal of Operations Research 11(2), 163–182 (2003); Luptaćik, M., Wildburger, U.L. (eds.) Physika-Verlag, A Springer-Verlag Company, Heidelberg

    Google Scholar 

  3. Jędrzejowicz, J., Jędrzejowicz, P.: Population–Based Approach to Multiprocessor Task Scheduling in Multistage Hybrid Flowshops. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp. 279–286. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Jędrzejowicz, J., Jędrzejowicz, P.: PLA–Based Permutation Scheduling. Foundations of Computing and Decision Sciences 28(3), 159–177 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Jędrzejowicz, J., Jędrzejowicz, P.: New Upper Bounds for the Permutation Flowshop Scheduling Problem. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 232–235. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Jędrzejowicz, P.: Social Learning Algorithm as a Tool for Solving Some Difficult Scheduling Problems. Foundation of Computing and Decision Sciences 24, 51–66 (1999)

    MATH  Google Scholar 

  7. Jędrzejowicz, P., Skakovski, A.: A Population Learning Algorithm for Discrete-Continuous Scheduling with Continuous Resource Discretisation. In: Chen, Y., Abraham, A. (eds.) 6th International Conference on Intelligent Systems Design and Applications, ISDA 2006 Special session: Nature Imitation Methods Theory and Practice (NIM 2006), October 16-18, vol. II, pp. 1153–1158. IEEE Computer Society, Jinan (2006)

    Google Scholar 

  8. Jędrzejowicz, P., Skakovski, A.: A Cross-Entropy Based Population Learning Algorithm for Discrete-Continuous Scheduling with Continuous Resource Discretisation. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS (LNAI), vol. 5177, pp. 82–89. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Józefowska, J., Węglarz, J.: On a methodology for discrete-continuous scheduling. European J. Oper. Res. 107(2), 338–353 (1998)

    Article  MATH  Google Scholar 

  10. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Solving discrete-continuous scheduling problems by Tabu Search. In: 4th Metaheuristics International Conference MIC 2001, Porto, Portugal, July 16-20, pp. 667–671 (2001)

    Google Scholar 

  11. Józefowska, J., Różycki, R., Waligóra, G., Węglarz, J.: Local search metaheuristics for some discrete-continuous scheduling problems. European J. Oper. Res. 107(2), 354–370 (1998)

    Article  MATH  Google Scholar 

  12. Różycki, R.: Zastosowanie algorytmu genetycznego do rozwiązywania dyskretno-ciągłych problemów szeregowania. PhD dissertation, Istitute of Computing Science, Poznań University of Technology, Piotrowo 3A, 60-965, Poznań, Poland (2000)

    Google Scholar 

  13. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. European Journal of Operations Research 99, 89–112 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Jędrzejowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jędrzejowicz, P., Skakovski, A. (2013). Structure vs. Efficiency of the Cross-Entropy Based Population Learning Algorithm for Discrete-Continuous Scheduling with Continuous Resource Discretisation. In: Czarnowski, I., Jędrzejowicz, P., Kacprzyk, J. (eds) Agent-Based Optimization. Studies in Computational Intelligence, vol 456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34097-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34097-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34096-3

  • Online ISBN: 978-3-642-34097-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics