[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Oscillation of Runge-Kutta Methods for a Scalar Differential Equation with One Delay

  • Conference paper
Information Computing and Applications (ICICA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 307))

Included in the following conference series:

  • 1208 Accesses

Abstract

Numerical oscillation of Runge-Kutta methods for differential equations with piecewise constant arguments is considered in this paper. The conditions of oscillation for the Runge-Kutta methods are obtained. It is proven that the numerical oscillation on the integer nodes are equivalent to the numerical oscillation on the any nodes and oscillation of the analytic solution is preserved by the Runge-Kutta methods. Moreover, the relationship between stability and oscillation is discussed for analytic solution and numerical solution, respectively. At last, several numerical simulations are carried out to support the theoretical analysis of the research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akhmet, M.U., Arugaslan, D., Yllmaz, E.: Stability in Cellular Neural Networks with a Piecewise Constant Argument. J. Comput. Appl. Math. 233, 2365–2373 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akhmet, M.U., Arugaslan, D., Yllmaz, E.: Method of Lyapunov Functions for Differential Equations with Piecewise Constant Delay. J. Comput. Appl. Math. 235, 4554–4560 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dimbour, W.: Almost Automorphic Solutions for Differential Equations with Piecewise Constant Argument in a Banach Space. Nonlinear Anal. 74, 2351–2357 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Akhmet, M.U., Arugaslan, D., Yllmaz, E.: Stability Analysis of Recurrent Neural Networks with Piecewise Constant Argument of Generalized Type. Neural Networks 23, 805–811 (2010)

    Article  Google Scholar 

  5. Fu, X.L., Li, X.D.: Oscillation of Higher Order Impulsive Differential Equations of Mixed Type with Constant Argument at Fixed Time. Math. Comput. Model. 48, 776–786 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Luo, Z.G., Shen, J.H.: New Results on Oscillation for Delay Differential Equations with Piecewise Constant Argument. Comput. Math. Appl. 45, 1841–1848 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Shen, J.H., Stavroulakis, I.P.: Oscillatory and Nonoscillatory Delay Equations with Piecewise Constant Argument. J. Math. Anal. Appl. 248, 385–401 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wiener, J.: Generalized Solutions of Functional Differential Equations. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  9. Song, M.H., Liu, X.: The Improved Linear Multistep Methods for Differential Equations with Piecewise Continuous Arguments. Appl. Math. Comput. 217, 4002–4009 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu, M.Z., Ma, S.F., Yang, Z.W.: Stability Analysis of Runge-Kutta Methods for Unbounded Retarded Differential Equations with Piecewise Continuous Arguments. Appl. Math. Comput. 191, 57–66 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Song, M.H., Yang, Z.W., Liu, M.Z.: Stability of θ-Methods for Advanced Differential Equations with Piecewise Continuous Arguments. Comput. Math. Appl. 49, 1295–1301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dai, H.Y., Liu, M.Z.: Mean-square Stability of Stochastic Differential Equations with Piecewise Continuous Arguments. Heilongjiang Univ. J. Nat. Sci. 25, 625–629 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Liu, M.Z., Gao, J.F., Yang, Z.W.: Oscillation Analysis of Numerical Solution in the θ-Methods for Equation x’(t)+ax(t)+a 1 x([t-1])=0. Appl. Math. Comput. 186, 566–578 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, M.Z., Gao, J.F., Yang, Z.W.: Preservation of Oscillations of the Runge-Kutta Method for Equation x’(t)+ax(t)+a 1 x([t-1])=0. Comput. Math. Appl. 58, 1113–1125 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gao, J.F., Liu, M.Z.: Numerical Oscillations of the θ-Method for Advanced Delay Differential Equations with Piecewise Continuous Arguments. Heilongjiang Univ. J. Nat. Sci. 25, 196–203 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q., Wen, J., Fu, F. (2012). Oscillation of Runge-Kutta Methods for a Scalar Differential Equation with One Delay. In: Liu, C., Wang, L., Yang, A. (eds) Information Computing and Applications. ICICA 2012. Communications in Computer and Information Science, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34038-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34038-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34037-6

  • Online ISBN: 978-3-642-34038-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics