[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Three-Dimensional Gyrotron Simulation Using a High-Order Particle-in-Cell Method

  • Conference paper
High Performance Computing in Science and Engineering '11

Abstract

A three-dimensional highly parallelized code for plasma simulation based on the Particle-In-Cell (PIC) approach using a discontinuous Galerkin method has been developed and validated within the instationary magneto-plasma dynamic (IMPD) thruster project (Associated with the DFG project “Numerical Modeling and Simulation of Highly Rarefied Plasma Flows”). With this code, it is for the first time possible to simulate the highly challenging gyrotron launcher and resonator, i.e. a high-energetic microwave source used for fusion-plasma heating, without using any physical approximations. We present the results of the gyrotron simulations with special focus on the parallelization capabilities of our code. For the gyrotron launcher, computations with up to 2048 processes have been performed. Parallel scaling of the PIC code with at most 1024 processes for simulating the gyrotron resonator is investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. Adam Hilger, Bristol, Philadelphia, New York, 1991.

    Book  Google Scholar 

  2. M. Fertig, D. Petkow, T. Stindl, M. Quandt, C.-D. Munz, J. Neudorfer, S. Roller, D. D’Andrea, and R. Schneider. Hybrid code development for the numerical simulation of instationary magnetoplasmadynamic thrusters. High Performance Computing in Science and Engineering ’08. Springer, Berlin, Heidelberg, pp. 585–597, 2009.

    Chapter  Google Scholar 

  3. G. Gassner, F. Lörcher, C.-D. Munz, and J. S. Hesthaven. Polymorphic nodal elements and their application in discontinuous Galerkin methods. J. Comput. Phys., 228(5):1573–1590, 2009. doi:10.1016/j.jcp.2008.11.012.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods. Springer, New York, 2008.

    Book  MATH  Google Scholar 

  5. R. Hockney and J. Eastwood. Computer Simulation Using Particles. McGraw-Hill, New York, 1981.

    Google Scholar 

  6. S. Illy. Untersuchungen von Strahlinstabilitäten in der Kompressionszone von Gyrotron-Oszillatoren mit Hilfe der kinetischen Theorie und zeitabhängiger Particle-in-Cell-Simulationen. PhD thesis, Universität Karlsruhe und Forschungszentrum Karlsruhe (FZKA 6037), December 1997.

    Google Scholar 

  7. J. Jin, M. Thumm, B. Piosczyk, S. Kern, J. Flamm, and T. Rzesnicki. Novel numerical method for the analysis and synthesis of the fields in highly oversized waveguide mode converters. IEEE Transactions on Microwave Theory and Techniques, 57(7):1661, 2009.

    Article  Google Scholar 

  8. C. A. Kennedy, M. H. Carpenter, and R. M. Lewis. Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Applied Numerical Mathematics, 35:177–219, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Kern. Numerische Simulation der Gyrotron-Wechselwirkung in koaxialen Resonatoren. PhD thesis, Forschungszentrum Karlsruhe GmbH, FZKA, 1996.

    Google Scholar 

  10. C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voß. Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys., 161:484–511, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Stindl, J. Neudorfer, A. Stock, M. Auweter-Kurtz, C.-D. Munz, S. Roller, and R. Schneider. Comparison of coupling techniques in a high-order discontinuous Galerkin based particle in cell solver. J. Phys. D: Applied Physics, 44:194004, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-D. Munz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stock, A. et al. (2012). Three-Dimensional Gyrotron Simulation Using a High-Order Particle-in-Cell Method. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_47

Download citation

Publish with us

Policies and ethics