Abstract
A three-dimensional highly parallelized code for plasma simulation based on the Particle-In-Cell (PIC) approach using a discontinuous Galerkin method has been developed and validated within the instationary magneto-plasma dynamic (IMPD) thruster project (Associated with the DFG project “Numerical Modeling and Simulation of Highly Rarefied Plasma Flows”). With this code, it is for the first time possible to simulate the highly challenging gyrotron launcher and resonator, i.e. a high-energetic microwave source used for fusion-plasma heating, without using any physical approximations. We present the results of the gyrotron simulations with special focus on the parallelization capabilities of our code. For the gyrotron launcher, computations with up to 2048 processes have been performed. Parallel scaling of the PIC code with at most 1024 processes for simulating the gyrotron resonator is investigated in detail.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. Adam Hilger, Bristol, Philadelphia, New York, 1991.
M. Fertig, D. Petkow, T. Stindl, M. Quandt, C.-D. Munz, J. Neudorfer, S. Roller, D. D’Andrea, and R. Schneider. Hybrid code development for the numerical simulation of instationary magnetoplasmadynamic thrusters. High Performance Computing in Science and Engineering ’08. Springer, Berlin, Heidelberg, pp. 585–597, 2009.
G. Gassner, F. Lörcher, C.-D. Munz, and J. S. Hesthaven. Polymorphic nodal elements and their application in discontinuous Galerkin methods. J. Comput. Phys., 228(5):1573–1590, 2009. doi:10.1016/j.jcp.2008.11.012.
J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods. Springer, New York, 2008.
R. Hockney and J. Eastwood. Computer Simulation Using Particles. McGraw-Hill, New York, 1981.
S. Illy. Untersuchungen von Strahlinstabilitäten in der Kompressionszone von Gyrotron-Oszillatoren mit Hilfe der kinetischen Theorie und zeitabhängiger Particle-in-Cell-Simulationen. PhD thesis, Universität Karlsruhe und Forschungszentrum Karlsruhe (FZKA 6037), December 1997.
J. Jin, M. Thumm, B. Piosczyk, S. Kern, J. Flamm, and T. Rzesnicki. Novel numerical method for the analysis and synthesis of the fields in highly oversized waveguide mode converters. IEEE Transactions on Microwave Theory and Techniques, 57(7):1661, 2009.
C. A. Kennedy, M. H. Carpenter, and R. M. Lewis. Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Applied Numerical Mathematics, 35:177–219, 2000.
S. Kern. Numerische Simulation der Gyrotron-Wechselwirkung in koaxialen Resonatoren. PhD thesis, Forschungszentrum Karlsruhe GmbH, FZKA, 1996.
C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voß. Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys., 161:484–511, 2000.
T. Stindl, J. Neudorfer, A. Stock, M. Auweter-Kurtz, C.-D. Munz, S. Roller, and R. Schneider. Comparison of coupling techniques in a high-order discontinuous Galerkin based particle in cell solver. J. Phys. D: Applied Physics, 44:194004, 2011.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stock, A. et al. (2012). Three-Dimensional Gyrotron Simulation Using a High-Order Particle-in-Cell Method. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23869-7_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-23869-7_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23868-0
Online ISBN: 978-3-642-23869-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)