[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tensor Method for Constructing 3D Moment Invariants

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6855))

Included in the following conference series:

Abstract

A generalization from 2D to 3D of the tensor method for derivation of both affine invariants and rotation, translation and scaling (TRS) invariants is described. The method for generation of the 3D TRS invariants of higher orders is automated and experimentally tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cyganski, D., Orr, J.A.: Object recognition and orientation determination by tensor methods. In: Huang, T.S. (ed.) Advances in Computer Vision and Image Processing, pp. 101–144. JAI Press, Greenwich (1988)

    Google Scholar 

  2. Department of Image Processing: 3D rotation moment invariants, http://zoi.utia.cas.cz/3DRotationInvariants

  3. Flusser, J., Suk, T., Zitová, B.: Moments and Moment Invariants in Pattern Recognition. Wiley, Chichester (2009)

    Book  MATH  Google Scholar 

  4. Lo, C.H., Don, H.S.: 3-D moment forms: Their construction and application to object identification and positioning. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(10), 1053–1064 (1989)

    Article  Google Scholar 

  5. Reiss, T.H.: Recognizing Planar Objects Using Invariant Image Features. LNCS, vol. 676. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  6. Sadjadi, F.A., Hall, E.L.: Three dimensional moment invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(2), 127–136 (1980)

    Article  MATH  Google Scholar 

  7. Suk, T., Flusser, J.: Affine moment invariants generated by graph method. Pattern Recognition 44(9), 2047–2056 (2011)

    Article  Google Scholar 

  8. Tuzikov, A.V., Sheynin, S.A., Vasiliev, P.V.: Efficient computation of body moments. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 201–208. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Wikipedia: Einstein notation, http://en.wikipedia.org/wiki/Einsteinnotation

  10. Xu, D., Li, H.: 3-D surface moment invariants. In: Proceedings of the 18th International Conference on Pattern Recognition ICPR 2006, pp. 173–176. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suk, T., Flusser, J. (2011). Tensor Method for Constructing 3D Moment Invariants. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23678-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23678-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23677-8

  • Online ISBN: 978-3-642-23678-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics