Abstract
Minimally invasive surgeries (MIS) have been perpetually evolving due to their potential high impact on improving patient management and overall cost effectiveness. Currently, MIS are further strengthened by the incorporation of magnetic resonance imaging (MRI) for amended visualization and high precision. Motivated by the fact that real-time MRI is emerging as a feasible modality especially for guiding interventions and surgeries in the beating heart; in this paper we introduce a real-time path planning algorithm for intracardiac procedures. Our approach creates a volumetric safety zone inside a beating heart and updates it on-the-fly using real-time MRI during the deployment of a robotic device. In order to prove the concept and assess the feasibility of the introduced method, a realistic operational scenario of transapical aortic valve replacement in a beating heart is chosen as the virtual case study.
Chapter PDF
Similar content being viewed by others
References
Jolesz, F.A.: Future perspectives for intraoperative MRI. Neurosurg. Clin. N. Am. 16, 201–213 (2005)
Li, M., Mazilu, D., Wood, B.J., Horvath, K.A., Kapoor, A.: A robotic assistant system for cardiac interventions under MRI guidance. In: Proc. SPIE 7625, pp. 76252X (2010)
McRae, M.E., Rodger, M., Bailey, B.A.: Transcatheter and transapical aortic valve replacement. Crit. Care Nurse 29, 22–37 (2009)
Horvath, K.A., Mazilu, D., Guttman, M., Zetts, A., Hunt, T., Li, M.: Midterm results of transapical aortic valve replacement via real-time magnetic resonance imaging guidance. J. Thorac. Cardiovasc. Surg. 139, 424–430 (2010)
Yeniaras, E., Deng, Z., Davies, M., Syed, M.A., Tsekos, N.V.: A Novel Virtual Reality Environment for Preoperative Planning and Simulation of Image Guided Intracardiac Surgeries with Robotic Manipulators. Stud. Health Technol. Inform. 163, 716–722 (2011)
Zhou, Y., Yeniaras, E., Tsiamyrtzis, P., Tsekos, N., Pavlidis, I.: Collaborative Tracking for MRI-Guided Robotic Intervention on the Beating Heart. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 351–358. Springer, Heidelberg (2010)
Elgort, D.R., Wong, E.Y., Hillenbrand, C.M., Wacker, F.K., Lewin, J.S., Duerk, J.L.: Real-time catheter tracking and adaptive imaging. J. Magn. Reson. Imaging 18, 621–626 (2003)
Christoforou, E., Akbudak, E., Ozcan, A., Karanikolas, M., Tsekos, N.V.: Performance of interventions with manipulator-driven real-time MR guidance: implementation and initial in vitro tests. Magn. Reson. Imaging 25, 69–77 (2007)
Sternberg, N.V., Hedayati, Y., Yeniaras, E., Christoforou, E., Tsekos, N.V.: Design of an actuated phantom to mimic the motion of cardiac landmarks for the study of image-guided intracardiac interventions. In: ROBIO, pp. 856–861 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yeniaras, E., Navkar, N.V., Sonmez, A.E., Shah, D.J., Deng, Z., Tsekos, N.V. (2011). MR-Based Real Time Path Planning for Cardiac Operations with Transapical Access. In: Fichtinger, G., Martel, A., Peters, T. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, vol 6891. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23623-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-23623-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23622-8
Online ISBN: 978-3-642-23623-5
eBook Packages: Computer ScienceComputer Science (R0)