[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem for a Coupled Pair of Ions

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6885))

Included in the following conference series:

Abstract

Symbolic-numerical algorithms for solving a boundary value problem (BVP) for the 2D Schrödinger equation with homogeneous third type boundary conditions to study the quantum tunneling model of a coupled pair of nonidentical ions are described. The Kantorovich reduction of the above problem with non-symmetric long-range potentials to the BVPs for sets of the second order ordinary differential equations (ODEs) is given by expanding solution over the one-parametric set of basis functions. Symbolic algorithms for evaluation of asymptotics of the basis functions, effective potentials, and linear independent solutions of the ODEs in the form of inverse power series of independent variable at large values are given by using appropriate etalon equations. Benchmark calculation of quantum tunneling problem of coupled pair of identical ions through Coulomb-like barrier is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hofmann, H.: Quantum mechanical treatment of the penetration through a two-dimensional fission barrier. Nucl. Phys. A 224, 116–139 (1974)

    Article  Google Scholar 

  2. Hagino, K., Rowley, N., Kruppa, A.T.: A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions. Comput. Phys. Commun. 123, 143–152 (1999)

    Article  MATH  Google Scholar 

  3. Pen’kov, F.M.: Metastable states of a coupled pair on a repulsive barrier. Phys. Rev. A 62, 044701-1-4 (2000)

    Google Scholar 

  4. Pen’kov, F.M.: Quantum Transmittance of Barriers for Composite Particles. JETP 91, 698–705 (2000)

    Article  Google Scholar 

  5. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)

    MATH  Google Scholar 

  6. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm–Liouville problem. Comput. Phys. Commun. 180, 1358–1375 (2009)

    Article  MATH  Google Scholar 

  7. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 2. 0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Comput. Phys. Commun. 179, 685–693 (2008)

    MATH  Google Scholar 

  8. Chuluunbaatar, O., Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov, V., Tupikova, T., Vinitsky, S.: A Symbolic-numerical algorithm for solving the eigenvalue problem for a hydrogen atom in the magnetic field: cylindrical coordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 118–133. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  10. Barnett, A.R., Feng, D.H., Steed, J.W., Goldfarb, L.J.B.: Coulomb wave functions for all real η and ρ. Comput. Phys. Comm. 8, 377–395 (1974)

    Article  Google Scholar 

  11. Goodvin, G.L., Shegelski, M.R.A.: Three-dimensional tunneling of a diatomic molecule incident upon a potential barrier. Phys. Rev. A 72, 042713-1-7 (2005)

    Google Scholar 

  12. Giannakeas, P., Melezhik, V.S., Schmelcher, P.: D-wave confinement-induced resonances in harmonic waveguides. arXiv:1102.5686v1 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A. (2011). Symbolic-Numerical Algorithms to Solve the Quantum Tunneling Problem for a Coupled Pair of Ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2011. Lecture Notes in Computer Science, vol 6885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23568-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23568-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23567-2

  • Online ISBN: 978-3-642-23568-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics