[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Involutive Division Generated by an Antigraded Monomial Ordering

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6885))

Included in the following conference series:

Abstract

In the present paper we consider a class of involutive monomial divisions pairwise constructed by the partition of variables into multiplicative and nonmultiplicative generated by a total monomial ordering. If this ordering is admissible or the inverse of an admissible ordering, then the involutive division generated possesses all algorithmically important properties such as continuity, constructivity, and noetherianity. Among all such divisions, we single out those generated by antigraded monomial orderings. We demonstrate, by example of the antigraded lexicographic ordering, that the divisions of this class are heuristically better than the classical Janet division. The last division is pairwise generated by the pure lexicographic ordering and up to now has been considered as computationally best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Mathematics and Computers in Simulation 45, 519–542 (1998); Minimal involutive bases, ibid, 543–560

    Article  MathSciNet  MATH  Google Scholar 

  2. Apel, J.: The theory of involutive divisions and an application to Hilbert function computations. J. Symbolic Computation 25, 683–704 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Janet, M.: Leçons sur les Systèmes d’Equations aux Dérivées Partielles. Cahiers Scientifiques, IV, Gauthier-Villars, Paris (1929)

    Google Scholar 

  4. Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computational Commutative and Non-Commutative Algebraic Geometry, pp. 199–225. IOS Press, Amsterdam (2005)

    Google Scholar 

  5. Seiler, W.M.: Involution: The formal theory of differential equations and its applications in computer algebra. In: Algorithms and Computation in Mathematics, vol. 24. Springer, Heidelberg (2010)

    Google Scholar 

  6. Gerdt, V.P., Blinkov, Y. A.: Specialized computer algebra system GINV. Programming and Computer Software 34(2), 112–123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. http://wwwb.math.rwth-aachen.de/Janet/

  8. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-2 - A computer algebra system for polynomial computations (2010), http://www.singular.uni-kl.de

  9. http://cag.jinr.ru/wiki/

  10. http://www.symbolicdata.org/

  11. Gerdt, V.P.: Involutive division technique: some generalizations and optimizations. J. Math. Sciences 108(6), 1034–1051 (2002)

    Article  MathSciNet  Google Scholar 

  12. Chen, Y.-F., Gao, X.-S.: Involutive directions and new involutive divisions. Computers and Mathematics with Applications 41, 945–956 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Semenov, A.S.: On connection between constructive involutive divisions and monomial orderings. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 261–278. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Semenov, A.S.: Constructivity of involutive divisions. Programming and Computer Software 32(2), 96–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Semenov, A.S., Zyuzikov, P.A.: Involutive divisions and monomial orderings. Programming and Computer Software 33(3), 139–146 (2007); Involutive divisions and monomial orderings: Part II. Ibid 34(2), 107–111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Graduate Texts in Mathematics, vol. 185. Springer, New York (2005)

    MATH  Google Scholar 

  17. Greul, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Berlin (2007)

    Google Scholar 

  18. Becker, T., Weispfenning, V.: Gröbner Bases. A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)

    MATH  Google Scholar 

  19. Gerdt, V.P.: On the relation between Pommaret and Janet bases. In: Computer Algebra in Scientific Computing / CASC 2000, pp. 167–181. Springer, Berlin (2000)

    Google Scholar 

  20. Bächler, T., Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: Thomas decomposition of algebraic and differential systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 31–54. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerdt, V.P., Blinkov, Y.A. (2011). Involutive Division Generated by an Antigraded Monomial Ordering. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2011. Lecture Notes in Computer Science, vol 6885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23568-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23568-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23567-2

  • Online ISBN: 978-3-642-23568-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics