Abstract
This chapter presents a study investigating a multi-objective formulation of the United States Navy’s Task-based Sailor Assignment Problem and examines the performance of a widely used multi-objective evolutionary algorithm (MOEA), namely NSGA-II, on large instances of this problem. The performance of the evolutionary algorithm is examined with respect to both solution quality and diversity and has shown to provide inadequate diversity along the Pareto front. Domain-specific local improvement operators were introduced into the MOEA, producing significant performance increases over the evolutionary algorithm alone. Thus, hybrid MOEAs provided greater diversity along the Pareto front. Also a parallel version of the evolutionary algorithm was implemented. Particularly, an island model implementation was investigated. Exhaustive experimentations of the sequential and parallel implementations were carried out. The experimental results show that the genetic-based solution presented here is suitable for these types of problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Knowles, J.D., Corne, D.W.: Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. Multi-Criterion Optimization, 757–771 (2007)
Moscato, P.: On evolution, search, optimization, genetic algorithms, and martial arts: Towards memetic algorithms. Technical Report 826, Caltech Concurrent Computation Program, C3P (1989)
Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Handbook of Metaheuristics, pp. 105–144 (2003)
Dasgupta, D., Hernandez, G., Garrett, D., Vejandla, P., Kaushal, A., Yerneni, R., Simien, J.: A comparison of multiobjective evolutionary algorithms with informed initialization and kuhn-munkres algorithm for the sailor assignment problem. In: Proceedings of the 2008 Genetic and Evolutionary Computation Conference (GECCO 2008). ACM Press, New York (2008)
Garrett, J.D., Vannucci, J., Silva, R., Dasgupta, D., Simien, J.: Genetic algorithms for the sailor assignment problem. In: Proceedings of the 2005 Genetic and Evolutionary Computation Conference, GECCO 2005. ACM Press, New York (2005)
Knowles, J.D., Corne, D.W.: Memetic algorithms for multiobjective optimization: Issues, methods, and prospects. In: Krasnogor, N., Smith, J.E., Hart, W.E. (eds.) Recent Advances in Memetic Algorithms. Springer, Heidelberg (2004)
Jaszkiewicz, A.: On the performance of multiple objective genetic local search on the 0/1 knapsack problem: A comparative experiment. Technical Report RA-002/2000, Institute of Computing Science, Poznan University of Technology (July 2000)
López-Ibáñez, M., Paquete, L., Stützle, T.: Hybrid population-based algorithms for the bi-objective quadratic assignment problem. Technical Report 1, FG Intellektik, FB Informatik, TU Darmstadt, Journal of Mathematical Modelling and Algorithms (2004)
Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62(1), 461–474 (1993)
Knowles, J., Corne, D.: Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem. In: Abraham, A., Ruiz del Solar, J., Koppen, M. (eds.) Soft Computing Systems: Design, Management and Applications, pp. 271–279. IOS Press, Amsterdam (2002)
Knowles, J.D., Corne, D.W.: M-PAES: A memetic algorithm for multiobjective optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000), pp. 325–332. IEEE Press, Los Alamitos (2000)
Krasnogor, N.: Towards robust memetic algorithms. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 185–208. Springer, Heidelberg (2004)
Garrett, J.D., Vannucci, J., Dasgupta, D., Simien, J.: Applying hybrid multiobjective evolutionary algorithms to the sailor assignment problem. In: Jain, L., Palade, V., Srinivasan, D. (eds.) Advances in Evolutionary Computing for System Design, pp. 269–301. Springer, Heidelberg (2007)
Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The American Mathematical Monthly 69, 9–15 (1962)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (1991)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (May 2001)
Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)
Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)
Dasgupta, D., Nino, F., Garrett, D., Chaudhuri, K., Medapati, S., Kaushal, A., Simien, J.: A multiobjective evolutionary algorithm for the task based sailor assignment problem. In: Proceedings of the 2009 Genetic and Evolutionary Computation Conference (GECCO 2009), pp. 1475–1482. ACM, New York (2009)
Akgul, M.: The linear assignment problem. Combinatorial Optimization, 85–122 (1992)
Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008)
Sun. Javaspaces, http://Java.sun.com/developer/technicalArticles/tools/JavaSpaces
Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces principles, patterns, and practice. E Addison-Wesley Longman Ltd., Amsterdam (1999)
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for solving multi-objective problems. Springer-Verlag New York Inc. (2007)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 825–830. IEEE Press, Los Alamitos (2002)
Bosman, P.A.N.: Design and Application of Iterated Density-Estimation Evolutionary Algorithms. PhD thesis, Institute of Information and Computing Sciences, Universiteit Utrecht, Utrecht, The Netherlands (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dasgupta, D., Garrett, D., Nino, F., Banceanu, A., Becerra, D. (2012). A Genetic-Based Solution to the Task-Based Sailor Assignment Problem. In: Chiong, R., Weise, T., Michalewicz, Z. (eds) Variants of Evolutionary Algorithms for Real-World Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23424-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-23424-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23423-1
Online ISBN: 978-3-642-23424-8
eBook Packages: EngineeringEngineering (R0)