[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparing the One-vs-One and One-vs-All Methods in Benthic Macroinvertebrate Image Classification

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6871))

Abstract

This paper investigates automated benthic macroinvertebrate identification and classification with multi-class support vector machines. Moreover, we examine, how the feature selection effects results, when one-vs-one and one-vs-all methods are used. Lastly, we explore what happens for the number of tie situations with different kernel function selections. Our wide experimental tests with three feature sets and seven kernel functions indicated that one-vs-one method suits best for the automated benthic macroinvertebrate identification. In addition, we obtained clear differences to the number of tie situations with different kernel funtions. Furthermore, the feature selection had a clear influence on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  2. Chauduri, A., De, K., Chatterjee, D.: A Comparative Study of Kernels for the Multi-class Support Vector Machine. In: Guo, M., Zhao, L., Wang, L. (eds.) Fourth International Conference of Natural Computation (ICNC 2008), vol. 2, pp. 3–7 (2008)

    Google Scholar 

  3. Christiani, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  5. Debnath, R., Takahide, N., Takahashi, H.: A decision based one-against-one method for multi-class support vector machine. Pattern Analysis Applications 7, 164–175 (2004)

    Article  MathSciNet  Google Scholar 

  6. ImageJ: public domain Java-based image processing program, http://rsbweb.nih.gov/ij/docs/index.html

  7. Joutsijoki, H., Juhola, M.: Kernel selection and its consequense to the number of ties in majority voting method (2011) (submitted)

    Google Scholar 

  8. Kahsay, L., Schwenker, F., Palm, G.: Comparison of multiclass svm decomposition schemes for visual object recognition. In: Kropatsch, W., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 334–341. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Kiranyaz, S., Gabbouj, M., Pulkkinen, J., Ince, T., Meissner, K.: Classification and Retrieval on Macroinvertebrate Image Databases using Evolutionary RBF Neural Networks. In: Proceedings of the International Workshop on Advanced Image Technology, Kuala Lumpur, Malaysia (2010)

    Google Scholar 

  10. Kiranyaz, S., Ince, T., Pulkkinen, J., Gabbouj, M., Ärje, J., Kärkkäinen, S., Tirronen, V., Juhola, M., Turpeinen, T., Meissner, K.: Classification and retrieval on macroinvertabrate image databases. Computers in Biology and Medicine 41, 463–472 (2011)

    Article  Google Scholar 

  11. Kiranyaz, S., Gabbouj, M., Pulkkinen, J., Ince, T., Meissner, K.: Network of evolutionary binary classifiers for classification and retrieval in macroinvertebrate databases. In: Proceedings of 2010 IEEE 17th International Conference on Image Processing (ICIP), pp. 2257–2260 (2010)

    Google Scholar 

  12. Li, Y., Dorai, C.: Instructional Video Content Analysis Using Audio Information. IEEE Transactions on Audio, Speech, and Language Processing 14(6), 2264–2274 (2006)

    Article  Google Scholar 

  13. Liu, J., Xie, L.: SVM-Based Automatic Classification of Musical Instruments. In: International Conference on Intelligent Computation Technology and Automation (ICICTA 2010), vol. 3, pp. 669–673 (2010)

    Google Scholar 

  14. Lytle, D.A., Martinez-Muñoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R., Moldenke, A., Mortensen, E.N., Todorovic, S., Dietterich, T.G.: Automated processing and identification of benthic invertebrate samples. Journal of North American Benthological Society 29(3), 867–874 (2010)

    Article  Google Scholar 

  15. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9, 293–300 (1999)

    Article  MATH  Google Scholar 

  17. Thorsten, J.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Google Scholar 

  18. Tirronen, V., Caponio, A., Haanpää, T., Meissner, K.: Multiple order gradient feature for macroinvertebrate identification using support vector machines. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 489–497. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  20. Ärje, J., Kärkkäinen, S., Meissner, K., Turpeinen, T.: Statistical classification and proportion estimation - an application to macroinvertebrate image database. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010), Kittilä, Finland, pp. 373–378 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joutsijoki, H., Juhola, M. (2011). Comparing the One-vs-One and One-vs-All Methods in Benthic Macroinvertebrate Image Classification. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2011. Lecture Notes in Computer Science(), vol 6871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23199-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23199-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23198-8

  • Online ISBN: 978-3-642-23199-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics