Abstract
We propose a concept for scene interpretation with integrated hierarchical structure. This hierarchical structure is used to detect mereological relations between complex objects as buildings and their parts, e. g., windows. We start with segmenting regions at many scales, arranging them in a hierarchy, and classifying them by a common classifier. Then, we use the hierarchy graph of regions to construct a conditional Bayesian network, where the probabilities of class occurrences in the hierarchy are used to improve the classification results of the segmented regions in various scales. The interpreted regions can be used to derive a consistent scene representation, and they can be used as object detectors as well. We show that our framework is able to learn models for several objects, such that we can reliably detect instances of them in other images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Epshtein, B., Ullman, S.: Semantic Hierarchies for Recognizing Objects and Parts. In: CVPR (2007)
Fidler, S., Leonardis, A.: Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts. In: CVPR (2007)
Schnitzspan, P., Fritz, M., Schiele, B.: Hierarchical support vector random fields: Joint training to combine local and global features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 527–540. Springer, Heidelberg (2008)
Ladický, L., Russell, C., Kohli, P., Torr, P.H.S.: Associative Hierarchical CRFs for Object Class Image Segmentation. In: ICCV, pp. 739–746 (2009)
Lim, J.J., Arbeláez, P., Gu, C., Malik, J.: Context by Region Ancestry. In: ICCV (2009)
Ommer, B., Buhmann, J.: Learning the Compositional Nature of Visual Object Categories for Recognition. PAMI 32(3), 501–516 (2010)
Kumar, S., Hebert, M.: Man-made Structure Detection in Natural Images using a Causal Multiscale Random Field. In: CVPR, vol. I, pp. 119–226 (2003)
Verbeek, J., Triggs, B.: Region Classification with Markov Field Aspect Models. In: CVPR (2007)
Plath, N., Toussaint, M., Nakajima, S.: Multi-class Image Segmentation using Conditional Random Fields and Global Classification. In: ICML, pp. 817–824 (2009)
Dick, A.R., Torr, P.H.S., Cipolla, R.: Modelling and Interpretation of Architecture from Several Images. IJCV 60(2), 111–134 (2004)
Ripperda, N., Brenner, C.: Evaluation of Structure Recognition Using Labelled Facade Images. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 532–541. Springer, Heidelberg (2009)
Lee, S.C., Nevatia, R.: Extraction and Integration of Window in a 3D Building Model from Ground View Images. In: CVPR, vol. II, pp. 113–120 (2004)
Reznik, S., Mayer, H.: Implicit Shape Models, Self-Diagnosis, and Model Selection for 3D Facade Interpretation. PFG 2008(3), 187–196 (2008)
Čech, J., Šára, R.: Languages for Constrained Binary Segmentation based on Maximum Aposteriori Probability Labeling. Intern. J. of Imaging and Technology 19(2), 66–99 (2009)
Jahangiri, M., Petrou, M.: Fully Bottom-up Blob Extraction in Building Facades. In: PRIA (2008)
Burochin, J.P., Tournaire, O., Paparoditis, N.: An Unsupervised Hierarchical Segmentation of a Facade Building Image in Elementary 2D-Models. In: ISPRS Workshop on Object Extraction for 3D City Models, Road Databases and Traffic Monitoring, pp. 223–228 (2009)
Drauschke, M.: An Irregular Pyramid for Multi-scale Analysis of Objects and Their Parts. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 293–303. Springer, Heidelberg (2009)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR, vol. I, pp. 886–893 (2005)
Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)
Korč, F., Förstner, W.: eTRIMS Image Database for Interpreting Images of Man-Made Scenes. Technical Report TR-IGG-P-2009-01, IGG University of Bonn (2009)
Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: textonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR, pp. 248–255 (2009)
Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour Detection and Hierarchical Image Segmentation. PAMI 33(5), 898–916 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Drauschke, M., Förstner, W. (2011). A Bayesian Approach for Scene Interpretation with Integrated Hierarchical Structure. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-23123-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23122-3
Online ISBN: 978-3-642-23123-0
eBook Packages: Computer ScienceComputer Science (R0)