Abstract
We propose reactive Turing machines (RTMs), extending classical Turing machines with a process-theoretical notion of interaction. We show that every effective transition system is simulated modulo branching bisimilarity by an RTM, and that every computable transition system with a bounded branching degree is simulated modulo divergence-preserving branching bisimilarity. We conclude from these results that the parallel composition of (communicating) RTMs can be simulated by a single RTM. We prove that there exist universal RTMs modulo branching bisimilarity, but these essentially employ divergence to be able to simulate an RTM of arbitrary branching degree. We also prove that modulo divergence-preserving branching bisimilarity there are RTMs that are universal up to their own branching degree. Finally, we establish a correspondence between RTMs and the process theory \(\ensuremath{\mathrm{\ensuremath{\mathrm{TCP}}_{\ensuremath{\ensuremath{\mathalpha{\tau}}}}}}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra (Equational Theories of Communicating Processes). Cambridge University Press, Cambridge (2009)
Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theoretical Computer Science 51, 129–176 (1987)
Baeten, J.C.M., Cuijpers, P.J.L., Luttik, B., van Tilburg, P.J.A.: A Process-Theoretic Look at Automata. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 1–33. Springer, Heidelberg (2010)
Baeten, J.C.M., Luttik, B., van Tilburg, P.J.A.: Reactive Turing machines. CoRR, abs/1104.1738 (2011)
Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoretical Computer Science 37, 77–121 (1985)
Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: Interactive small-step algorithms I: Axiomatization. Logical Methods in Computer Science 3(4) (2007)
Boudol, G.: Notes on algebraic calculi of processes. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO-ASI Series, vol. F13, pp. 261–303. Springer, Berlin (1985)
Darondeau, P.: Bisimulation and effectiveness. Inf. Process. Lett. 30(1), 19–20 (1989)
van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)
van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit divergence. Fundam. Inform. 93(4), 371–392 (2009)
van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. Journal of the ACM 43(3), 555–600 (1996)
Goldin, D.Q., Smolka, S.A., Attie, P.C., Sonderegger, E.L.: Turing machines, transition systems, and interaction. Inf. Comput. 194(2), 101–128 (2004)
Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI Series, vol. F-13, pp. 477–498. Springer, New York (1985)
Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)
Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2 (1962)
Phillips, I.C.C.: A note on expressiveness of process algebra. In: Burn, G.L., Gay, S., Ryan, M.D. (eds.) Proceedings of the First Imperial College Department of Computing Workshop on Theory and Formal Methods, Workshops in Computing, pp. 260–264. Springer, Heidelberg (1993)
Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Company, New York (1967); Reprinted by MIT Press (1987)
Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265 (1936)
Turing, A.M.: Systems of logic based on ordinals. Proceedings of the London Mathematical Society 45(2), 161–228 (1939)
van Leeuwen, J., Wiedermann, J.: On algorithms and interaction. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 99–113. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baeten, J.C.M., Luttik, B., van Tilburg, P. (2011). Reactive Turing Machines. In: Owe, O., Steffen, M., Telle, J.A. (eds) Fundamentals of Computation Theory. FCT 2011. Lecture Notes in Computer Science, vol 6914. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22953-4_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-22953-4_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22952-7
Online ISBN: 978-3-642-22953-4
eBook Packages: Computer ScienceComputer Science (R0)