[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Reactive Turing Machines

  • Conference paper
Fundamentals of Computation Theory (FCT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6914))

Included in the following conference series:

Abstract

We propose reactive Turing machines (RTMs), extending classical Turing machines with a process-theoretical notion of interaction. We show that every effective transition system is simulated modulo branching bisimilarity by an RTM, and that every computable transition system with a bounded branching degree is simulated modulo divergence-preserving branching bisimilarity. We conclude from these results that the parallel composition of (communicating) RTMs can be simulated by a single RTM. We prove that there exist universal RTMs modulo branching bisimilarity, but these essentially employ divergence to be able to simulate an RTM of arbitrary branching degree. We also prove that modulo divergence-preserving branching bisimilarity there are RTMs that are universal up to their own branching degree. Finally, we establish a correspondence between RTMs and the process theory \(\ensuremath{\mathrm{\ensuremath{\mathrm{TCP}}_{\ensuremath{\ensuremath{\mathalpha{\tau}}}}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra (Equational Theories of Communicating Processes). Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theoretical Computer Science 51, 129–176 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baeten, J.C.M., Cuijpers, P.J.L., Luttik, B., van Tilburg, P.J.A.: A Process-Theoretic Look at Automata. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 1–33. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Baeten, J.C.M., Luttik, B., van Tilburg, P.J.A.: Reactive Turing machines. CoRR, abs/1104.1738 (2011)

    Google Scholar 

  5. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoretical Computer Science 37, 77–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: Interactive small-step algorithms I: Axiomatization. Logical Methods in Computer Science 3(4) (2007)

    Google Scholar 

  7. Boudol, G.: Notes on algebraic calculi of processes. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO-ASI Series, vol. F13, pp. 261–303. Springer, Berlin (1985)

    Chapter  Google Scholar 

  8. Darondeau, P.: Bisimulation and effectiveness. Inf. Process. Lett. 30(1), 19–20 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum II. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

    Google Scholar 

  10. van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit divergence. Fundam. Inform. 93(4), 371–392 (2009)

    MathSciNet  MATH  Google Scholar 

  11. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. Journal of the ACM 43(3), 555–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldin, D.Q., Smolka, S.A., Attie, P.C., Sonderegger, E.L.: Turing machines, transition systems, and interaction. Inf. Comput. 194(2), 101–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI Series, vol. F-13, pp. 477–498. Springer, New York (1985)

    Chapter  Google Scholar 

  14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)

    MATH  Google Scholar 

  15. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  16. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2 (1962)

    Google Scholar 

  17. Phillips, I.C.C.: A note on expressiveness of process algebra. In: Burn, G.L., Gay, S., Ryan, M.D. (eds.) Proceedings of the First Imperial College Department of Computing Workshop on Theory and Formal Methods, Workshops in Computing, pp. 260–264. Springer, Heidelberg (1993)

    Google Scholar 

  18. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Company, New York (1967); Reprinted by MIT Press (1987)

    MATH  Google Scholar 

  19. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265 (1936)

    MathSciNet  MATH  Google Scholar 

  20. Turing, A.M.: Systems of logic based on ordinals. Proceedings of the London Mathematical Society 45(2), 161–228 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Leeuwen, J., Wiedermann, J.: On algorithms and interaction. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 99–113. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baeten, J.C.M., Luttik, B., van Tilburg, P. (2011). Reactive Turing Machines. In: Owe, O., Steffen, M., Telle, J.A. (eds) Fundamentals of Computation Theory. FCT 2011. Lecture Notes in Computer Science, vol 6914. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22953-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22953-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22952-7

  • Online ISBN: 978-3-642-22953-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics