[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

We study quantum algorithms for testing bipartiteness and expansion of bounded-degree graphs. We give quantum algorithms that solve these problems in time \(\tilde O(N^{1/3})\), beating the \(\Omega(\sqrt{N})\) classical lower bound. For testing expansion, we also prove an \(\tilde\Omega(N^{1/4})\) quantum query lower bound, thus ruling out the possibility of an exponential quantum speedup. Our quantum algorithms follow from a combination of classical property testing techniques due to Goldreich and Ron, derandomization, and the quantum algorithm for element distinctness. The quantum lower bound is obtained by the polynomial method, using novel algebraic techniques and combinatorial analysis to accommodate the graph structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aaronson, S.: Quantum lower bound for the collision problem. In: STOC, pp. 635–642 (2002)

    Google Scholar 

  2. Aaronson, S.: BQP and the polynomial hierarchy. In: STOC, pp. 141–150 (2010)

    Google Scholar 

  3. Aaronson, S., Ambainis, A.: The need for structure in quantum speedups. In: Innovations in Computer Science, pp. 338–352 (2011)

    Google Scholar 

  4. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. of Algorithms 7(4), 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures and Algorithms 3(3), 289–304 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambainis, A.: Quantum lower bounds by quantum arguments. J. of Computer and System Sciences 64(4), 750–767 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. on Computing 37(1), 210–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambainis, A., Childs, A.M., Liu, Y.-K.: Quantum property testing for bounded-degree graphs, arXiv:1012.3174 (2010)

    Google Scholar 

  9. Atici, A., Servedio, R.: Quantum algorithms for learning and testing juntas. Quantum Information Processing 6(5), 323–348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. of the ACM 48(4), 778–797 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buhrman, H., Durr, C., Heiligman, M., Hoyer, P., Magniez, F., Santha, M., de Wolf, R.: Quantum algorithms for element distinctness. SIAM J. on Computing 34(6), 1324–1330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buhrman, H., Fortnow, L., Newman, I., Rohrig, H.: Quantum property testing. SIAM J. on Computing 37(5), 1387–1400 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bravyi, S., Harrow, A.W., Hassidim, A.: Quantum algorithms for testing properties of distributions. In: STACS, pp. 131–142 (2010)

    Google Scholar 

  14. Chakraborty, S., Fischer, E., Matsliah, A., de Wolf, R.: New results on quantum property testing. In: FSTTCS, pp. 145–156 (2010)

    Google Scholar 

  15. Childs, A.M., Kothari, R.: Quantum query complexity of minor-closed graph properties. To appear in STACS (2011)

    Google Scholar 

  16. Czumaj, A., Sohler, C.: Testing expansion in bounded-degree graphs. In: FOCS, pp. 570–578 (2007)

    Google Scholar 

  17. Durr, C., Heiligman, M., Hoyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. on Computing 35(6), 1310–1328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldreich, O.: Randomized Methods in Computation, Lecture 2 (2001), http://www.wisdom.weizmann.ac.il/~oded/rnd.html

  19. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. of the ACM 45(4), 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldreich, O., Ron, D.: A sublinear bipartiteness tester for bounded degree graphs. Combinatorica 19(3), 335–373 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. ECCC report TR00-020 (2000)

    Google Scholar 

  22. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoyer, P., Lee, T., Spalek, R.: Negative weights make adversaries stronger. In: STOC, pp. 526–535 (2007)

    Google Scholar 

  24. Inui, Y., Le Gall, F.: Quantum property testing of group solvability. In: LATIN 2008. LNCS, vol. 4957, pp. 772–783. Springer, Heidelberg (2008)

    Google Scholar 

  25. Kale, S., Seshadhri, C.: Testing expansion in bounded-degree graphs, ECCC report TR07-076 (2007)

    Google Scholar 

  26. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. on Computing 37(2), 413–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: STOC, pp. 575–584 (2007)

    Google Scholar 

  28. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  29. Nachmias, A., Shapira, A.: Testing the expansion of a graph. Information and Computation 208, 309–314 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Paturi, R.: On the degree of polynomials that approximate symmetric Boolean functions (preliminary version). In: STOC, pp. 468–474 (1992)

    Google Scholar 

  31. Pinsker, M.: On the complexity of a concentrator. In: Proceedings of the 7th International Teletraffic Conference, pp. 318/1–318/4 (1973)

    Google Scholar 

  32. Santha, M.: Quantum walk based search algorithms. In: Theory and Applications of Models of Computation, pp. 31–46 (2008)

    Google Scholar 

  33. Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. In: FOCS, pp. 513–519 (2002)

    Google Scholar 

  34. Simon, D.R.: On the power of quantum computation. SIAM J. on Computing 26(5), 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: FOCS, pp. 32–41 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambainis, A., Childs, A.M., Liu, YK. (2011). Quantum Property Testing for Bounded-Degree Graphs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics