Abstract
This paper is dedicated to the complexity comparison of adaptive binary arithmetic coding integer software implementations. Firstly, for binary memoryless sources with known probability distribution, we prove that encoding time for arithmetic encoder is a linear function of a number of input binary symbols and source entropy. Secondly, we show that the byte-oriented renormalization allows to decrease encoding time up to 40% in comparison with bit-oriented renormalization. Finally, we study influence of probability estimation algorithm for encoding time and show that probability estimation algorithm using “Virtual Sliding Window“ has less computation complexity than state machine based probability estimation algorithm from H.264/AVC standard.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
ITU-T and ISO/IEC JTC1, Digital Compression and cod- ing of continuous-tone still images. ISO/IEC 10918-1 ITU-T Recommendation T.81, JPEG (1992)
ITU-T and ISO/IEC JTC 1, JPEG 2000 Image Coding System: Core Coding System. ITU-T Recommendation T.800 and ISO/IEC 15444-1 JPEG 2000 Part 1 (2000)
Advanced video coding for generic audiovisual services. ITU-T Recommendation H.264 and ISO/IEC 14496-10, AVC (2009)
Eeckhaut, H., Schrauwen, B., Christiaens, M., Campenhout, J.: Speeding up Dirac’s entropy coder. In: Proc. 5th WSEAS Int. Conf. on Multimedia, Internet and Video Technologies, pp. 120–125 (2005)
Pennebaker, W.B., Mitchel, J.L., Langdon, G.G., Arps, R.B.: An overview of the basic principles of the q-coder adaptive binary arithmetic coder. IBM J. Research and Development 32, 717–726 (1988)
Belyaev, E.: Low bit rate video coding based on three-dimensional discrete pseudo cosine transform. In: International Conference on Ultra Modern Telecommunications (2010)
Said, A.: Comparative analysis of arithmetic coding computational complexity. Hewlett-Packard Laboratories Report, HPL-2004-75 (2004)
High Efficiency Video Coding, http://www.h265.net/
Lu, X., Wang, Y., Erkip, E.: Power efficient H.263 video transmission over wireless channels. In: International Conference on Image Processing, pp. 533–536 (2002)
He, Z., Liang, Y., Chen, L., Ahmad, I., Wu, D.: Power-rate-distortion analysis for wireless video communication under energy constraints. IEEE Transactions on Circuits and Systems for Video Technology 15, 645–658 (2005)
Ryabko, B.: Imaginary sliding window as a tool for data compression. Problems of Information Transmission, 156–163 (1996)
Krichevski, E., Trofimov, V.: The performance of universal encoding. IEEE Transactions on Information Theory IT-27, 199–207 (1981)
Leighton, T., Rivest, R.L.: Estimating a probability using finite memory. IEEE Transactions on Information Theory IT-32, 733–742 (1986)
Belyaev, E., Gilmutdinov, M., Turlikov, A.: Binary arithmetic coding system with adaptive probability estimation by Virtual Sliding Window. In: Proceedings of the 10th IEEE International Symposium on Consumer Electronics, pp. 194–198 (2006)
Marpe, D., Schwarz, H., Wiegand, T.: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Transactions on Circuits and Systems for Video Technology 7, 620–636 (2003)
Schindler, M.A.: Byte oriented arithmetic coding. In: Proceedings of Data Compression Conference (1998)
Vatolin, D.: Data compression methods. Dialog-MIFI Publisher, Moscow (2002) (in Russian)
Lindstrom, P., Isenburg, M.: Fast and Efficient Compression of Floating-Point Data. IEEE Transactions on Visualization and Computer Graphics 12(5), 1245–1250 (2006)
Subbotin, D.: Carryless Rangecoder (1999), http://search.cpan.org/src/SALVA/Compress-PPMd-0.10/Coder.hpp
Ryabko, B.Y., Fionov, A.N.: An efficient method for adaptive arithmetic coding of sources with large alphabets. Problems of Information Transmission 35(4), 95–108 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Belyaev, E., Veselov, A., Turlikov, A., Kai, L. (2011). Complexity Analysis of Adaptive Binary Arithmetic Coding Software Implementations. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds) Smart Spaces and Next Generation Wired/Wireless Networking. ruSMART NEW2AN 2011 2011. Lecture Notes in Computer Science, vol 6869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22875-9_54
Download citation
DOI: https://doi.org/10.1007/978-3-642-22875-9_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22874-2
Online ISBN: 978-3-642-22875-9
eBook Packages: Computer ScienceComputer Science (R0)