Abstract
Information theory is widely used in a very broad class of scientific and engineering problems, including cryptography, neurobiology, quantum computing, plagiarism detection and other forms of data analysis. Despite the safety-critical nature of some of these applications, most of the information theoretic analysis is done using informal techniques and thus cannot be completely relied upon. To facilitate the formal reasoning about information theoretic aspects, this paper presents a rigorous higher-order logic formalization of some of the most widely used information theoretic principles. Building on fundamental formalizations of measure and Lebesgue integration theories for extended reals, we formalize the Radon-Nikodym derivative and prove some of its properties using the HOL theorem prover. This infrastructure is then used to formalize information theoretic fundamentals like Shannon entropy and relative entropy. We discuss potential applications of the proposed formalization for the analysis of data compression and security protocols.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bogachev, V.I.: Measure Theory. Springer, Heidelberg (2006)
Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability. Journal of Cryptology 1(1), 65–75 (1988)
Coble, A.R.: Anonymity, Information, and Machine-Assisted Proof. PhD thesis, University of Cambridge (2010)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience, Hoboken (1991)
Deng, Y., Pang, J., Wu, P.: Measuring Anonymity with Relative Entropy. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 65–79. Springer, Heidelberg (2007)
Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards Measuring Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)
Goldberg, R.R.: Methods of Real Analysis. Wiley, Chichester (1976)
Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)
Hölzl, J.: Mechanized Measure, Probability, and Information Theory. Technical University Munich, Germany (2010), http://puma.in.tum.de/p-wiki/images/d/d6/szentendre_hoelzl_probability.pdf
Hurd, J.: Formal Verifcation of Probabilistic Algorithms. PhD thesis, University of Cambridge (2002)
Hurd, J., McIver, A., Morgan, C.: Probabilistic Guarded Commands Mechanized in HOL. Electronic Notes in Theoretical Computer Science 112, 95–111 (2005)
Malacaria, P.: Assessing Security Threats of Looping Constructs. SIGPLAN Not. 42(1), 225–235 (2007)
Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the lebesgue integration theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 387–402. Springer, Heidelberg (2010)
Mhamdi, T., Hasan, O., Tahar, S.: Formalization of Measure and Lebesgue Integration over Extended Reals in HOL. Technical Report, ECE Dept., Concordia University (February 2011), http://hvg.ece.concordia.ca/Publications/TECH_REP/MLX_TR11/
Papoulis, A.: Probability, Random Variables, and Stochastic Processes. Mc-Graw Hill, New York (1984)
C. Paulson, L.: Isabelle: a Generic Theorem Prover. Springer, Heidelberg (1994)
Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM Transactions on Information and System Security 1(1), 66–92 (1998)
Serjantov, A., Danezis, G.: Towards an Information Theoretic Metric for Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003)
Shannon, C.E.: A Mathematical Theory of Communication. The Bell System Technical Journal 27(3), 379–423 (1948)
Shidama, Y., Endou, N., Kawamoto, P.N.: On the formalization of lebesgue integrals. Studies in Logic, Grammar and Rhetoric 10(23), 167–177 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mhamdi, T., Hasan, O., Tahar, S. (2011). Formalization of Entropy Measures in HOL. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds) Interactive Theorem Proving. ITP 2011. Lecture Notes in Computer Science, vol 6898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22863-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-22863-6_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22862-9
Online ISBN: 978-3-642-22863-6
eBook Packages: Computer ScienceComputer Science (R0)