[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Formalization of Entropy Measures in HOL

  • Conference paper
Interactive Theorem Proving (ITP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6898))

Included in the following conference series:

Abstract

Information theory is widely used in a very broad class of scientific and engineering problems, including cryptography, neurobiology, quantum computing, plagiarism detection and other forms of data analysis. Despite the safety-critical nature of some of these applications, most of the information theoretic analysis is done using informal techniques and thus cannot be completely relied upon. To facilitate the formal reasoning about information theoretic aspects, this paper presents a rigorous higher-order logic formalization of some of the most widely used information theoretic principles. Building on fundamental formalizations of measure and Lebesgue integration theories for extended reals, we formalize the Radon-Nikodym derivative and prove some of its properties using the HOL theorem prover. This infrastructure is then used to formalize information theoretic fundamentals like Shannon entropy and relative entropy. We discuss potential applications of the proposed formalization for the analysis of data compression and security protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bogachev, V.I.: Measure Theory. Springer, Heidelberg (2006)

    Google Scholar 

  2. Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability. Journal of Cryptology 1(1), 65–75 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coble, A.R.: Anonymity, Information, and Machine-Assisted Proof. PhD thesis, University of Cambridge (2010)

    Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience, Hoboken (1991)

    Book  MATH  Google Scholar 

  5. Deng, Y., Pang, J., Wu, P.: Measuring Anonymity with Relative Entropy. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 65–79. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards Measuring Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Goldberg, R.R.: Methods of Real Analysis. Wiley, Chichester (1976)

    MATH  Google Scholar 

  8. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  9. Hölzl, J.: Mechanized Measure, Probability, and Information Theory. Technical University Munich, Germany (2010), http://puma.in.tum.de/p-wiki/images/d/d6/szentendre_hoelzl_probability.pdf

  10. Hurd, J.: Formal Verifcation of Probabilistic Algorithms. PhD thesis, University of Cambridge (2002)

    Google Scholar 

  11. Hurd, J., McIver, A., Morgan, C.: Probabilistic Guarded Commands Mechanized in HOL. Electronic Notes in Theoretical Computer Science 112, 95–111 (2005)

    Article  MATH  Google Scholar 

  12. Malacaria, P.: Assessing Security Threats of Looping Constructs. SIGPLAN Not. 42(1), 225–235 (2007)

    Article  MATH  Google Scholar 

  13. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the lebesgue integration theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 387–402. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of Measure and Lebesgue Integration over Extended Reals in HOL. Technical Report, ECE Dept., Concordia University (February 2011), http://hvg.ece.concordia.ca/Publications/TECH_REP/MLX_TR11/

  15. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. Mc-Graw Hill, New York (1984)

    MATH  Google Scholar 

  16. C. Paulson, L.: Isabelle: a Generic Theorem Prover. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  17. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM Transactions on Information and System Security 1(1), 66–92 (1998)

    Article  Google Scholar 

  18. Serjantov, A., Danezis, G.: Towards an Information Theoretic Metric for Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Shannon, C.E.: A Mathematical Theory of Communication. The Bell System Technical Journal 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shidama, Y., Endou, N., Kawamoto, P.N.: On the formalization of lebesgue integrals. Studies in Logic, Grammar and Rhetoric 10(23), 167–177 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mhamdi, T., Hasan, O., Tahar, S. (2011). Formalization of Entropy Measures in HOL. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds) Interactive Theorem Proving. ITP 2011. Lecture Notes in Computer Science, vol 6898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22863-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22863-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22862-9

  • Online ISBN: 978-3-642-22863-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics