[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

High Dimensional Correspondences from Low Dimensional Manifolds – An Empirical Comparison of Graph-Based Dimensionality Reduction Algorithms

  • Conference paper
Computer Vision – ACCV 2010 Workshops (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6469))

Included in the following conference series:

  • 1296 Accesses

Abstract

We discuss the utility of dimensionality reduction algorithms to put data points in high dimensional spaces into correspondence by learning a transformation between assigned data points on a lower dimensional structure. We assume that similar high dimensional feature spaces are characterized by a similar underlying low dimensional structure. To enable the determination of an affine transformation between two data sets we make use of well-known dimensional reduction algorithms. We demonstrate this procedure for applications like classification and assignments between two given data sets and evaluate six well-known algorithms during several experiments with different objectives. We show that with these algorithms and our transformation approach high dimensional data sets can be related to each other. We also show that linear methods turn out to be more suitable for assignment tasks, whereas graph-based methods appear to be superior for classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bach, F.R., Jordan, M.I.: Spectral Clustering for Speech Separation. Wiley, Chichester (2009)

    Book  Google Scholar 

  2. Mittal, A., Monnet, A., Paragios, N.: Scene Modeling and Change Detection in Dynamic Scenes: A Subspace Approach. In: CVUI, vol. 113 (2009)

    Google Scholar 

  3. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In: CVPR, vol. 37, p. 18 (2008)

    Google Scholar 

  4. Murase, H.: Moving Object Recognition in Eigenspace Representation: Gait Analysis and Lip Reading. Pattern Recognition Letters 17, 155–162 (1996)

    Article  Google Scholar 

  5. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  6. Cox, T.F., Cox, M.A.: Multidimensional Scaling, vol. 30. Chapman & Hall, Sydney (1994)

    MATH  Google Scholar 

  7. Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319 (2000)

    Article  Google Scholar 

  8. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science (2000)

    Google Scholar 

  9. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  10. Nadler, B., Lafon, S., Coifman, R.R.: Diffusion Maps, Spectral Clustering and Reaction Coordinates of Dynamical Systems. Applied and Computational Harmonic Analysis 21, 113–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Weinberger, K.Q., Saul, L.K.: Unsupervised Learning of Image Manifolds by Semidefinite Programming. IJCV 70, 77–90 (2006)

    Article  Google Scholar 

  12. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A Kernel View of the Dimensionality Reduction of Manifolds. In: ICML, vol. 47 (2004)

    Google Scholar 

  13. Schölkopf, B., Smola, A., Müller, K.: Kernel Principal Component Analysis. MIT Press, Cambridge (1999)

    Google Scholar 

  14. De Silva, V., Tenenbaum, J.B.: Global versus Local Methods in Nonlinear Dimensionality Reduction. In: NIPS (2003)

    Google Scholar 

  15. Weinberger, K.Q., Packer, B.D., Saul, L.K.: Nonlinear Dimensionality Reduction by Semidefinite Programming and Kernel Matrix Factorization. In: International Workshop on Artificial Intelligence and Statistics, pp. 381–388 (2005)

    Google Scholar 

  16. Chang, H., Yeung, D.Y.: Robust Locally Linear Embedding. Pattern Recognition 39, 1053–1065 (2006)

    Article  MATH  Google Scholar 

  17. Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM Journal of Scientific Computing (2004)

    Google Scholar 

  18. Donoho, D.L., Grimes, C.: Hessian Eigenmaps: Locally Linear Embedding Techniques for High-Dimensional Data. National Academy of Sciences 100 (2003)

    Google Scholar 

  19. Saul, L.K., Roweis, S.T.: Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. JMLR 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Ham, J., Lee, D., Saul, L.: Learning High Dimensional Correspondences from Low Dimensional Manifolds. In: ICML (2003)

    Google Scholar 

  21. Tenenbaum, J., Freeman, W.: Separating Style and Content with Bilinear Models. Neural Computation 12 (2000)

    Google Scholar 

  22. De la Torre, F., Black, M.: Dynamic coupled component analysis. In: CVPR (2005)

    Google Scholar 

  23. Wang, C., Mahadevan, S.: Manifold Alignment Using Procrustes Analysis. In: ICML (2008)

    Google Scholar 

  24. Lee, M.: Algorithms for Representing Similarity Data (1999)

    Google Scholar 

  25. Seewald, A.K.: Digits–A dataset for Handwritten Digit Recognition. TR (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roscher, R., Schindler, F., Förstner, W. (2011). High Dimensional Correspondences from Low Dimensional Manifolds – An Empirical Comparison of Graph-Based Dimensionality Reduction Algorithms. In: Koch, R., Huang, F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22819-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22819-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22818-6

  • Online ISBN: 978-3-642-22819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics