[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Neighborhood Search Assisted Particle Swarm Optimization (NPSO) Algorithm for Partitional Data Clustering Problems

  • Conference paper
Advances in Computing and Communications (ACC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 192))

Included in the following conference series:

Abstract

New variant of PSO algorithm called Neighborhood search assisted Particle Swarm Optimization (NPSO) algorithm for data clustering problems has been proposed in this paper. We have proposed two neighborhood search schemes and a centroid updating scheme to improve the performance of the PSO algorithm. NPSO algorithm has been applied to solve the data clustering problems by considering three performance metrics, such as TRace Within criteria (TRW), Variance Ratio Criteria (VRC) and Marriott Criteria (MC). The results obtained by the proposed algorithm have been compared with the published results of basic PSO algorithm, Combinatorial Particle Swarm Optimization (CPSO) algorithm, Genetic Algorithm (GA) and Differential Evolution (DE) algorithm. The performance analysis demonstrates the effectiveness of the proposed algorithm in solving the partitional data clustering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xu, R., Wunsch, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural Network 16(3), 645–678 (2005)

    Article  Google Scholar 

  2. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Piscataway (1995)

    Google Scholar 

  3. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Survey 31(3), 264–323 (1999)

    Article  Google Scholar 

  4. Paterlini, S., Krink, T.: Differential evolution and particle swarm optimization in partitional clustering. Computational Statistics & Data Analysis 50(5), 1220–1247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceeding of the 1998 IEEE World Congress on Computational Intelligence, pp. 69–73. IEEE Press, Piscataway (1998)

    Google Scholar 

  6. Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Proceeding of the 1999 IEEE World Congress on Evolutionary Computing, pp. 1945–1950. IEEE Press, Piscataway (1999)

    Google Scholar 

  7. Eberhart, R., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceeding of 2001 IEEE World Congress on Evolutionary Computing, pp. 94–100. IEEE Press, Piscataway (2001)

    Google Scholar 

  8. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

  9. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simple, maybe better. IEEE Transaction on Evolutionary Computing 8(3), 204–210 (2004)

    Article  Google Scholar 

  10. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self organization hierarchical particle swarm optimizer with time varying acceleration coefficients. IEEE Transaction on Evolutionary Computing 8(3), 240–255 (2004)

    Article  Google Scholar 

  11. Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive variants. IEEE Transaction on System, Man and Cybernetics (Part B) 35(6), 1272–1282 (2005)

    Article  Google Scholar 

  12. Chatterjee, A., Siarry, P.: Non Linear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers and Operations Research 33, 859–871 (2006)

    Article  MATH  Google Scholar 

  13. Van Der Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computing 2003, Canberra, Australia, pp. 215–220 (2003)

    Google Scholar 

  14. Xiao, X., Dow, E.R., Eberhart, R.C., Miled, Z.B., Oppelt, R.J.: Gene Clustering Using Self-Organizing Maps and Particle Swarm Optimization. In: Proc of the 17th International Symposium on Parallel and Distributed Processing (PDPS 2003). IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  15. Chen, C.Y., Ye, F.: Particle swarm optimization algorithm and its applications to clustering analysis. In: Proceedings of IEEE International Conference on Networking, Sensing and Control, pp. 789–794 (2004)

    Google Scholar 

  16. Orman, M.G.H., Salman, A., Engelbrecht, A.P.: Dynamic clustering using Particle Swarm Optimization with application in image segmentation. Pattern Analysis and Application 8(4), 332–344 (2005)

    MathSciNet  Google Scholar 

  17. Cohen, S.C.M., De Castro, L.N.: Data Clustering with Particle swarms. In: IEEE Congress on Evolutionary Computations, Vancouver, Canada (2006)

    Google Scholar 

  18. Jarboui, B., Cheikh, M., Siarry, P., Rebai, A.: Combinatorial particle swarm optimization(CPSO) for partitional clustering problem. Applied Mathematics and Computation 192, 337–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karthi, R., Arumugam, S., RameshKumar, K.: Discrete Particle Swarm Optimization algorithm for Data Clustering. Studies in Computational Intelligence, SCI, vol. 236, pp. 75–88 (2009)

    Google Scholar 

  20. Karthi, R., Arumugam, S., Rameshkumar, K.: Comparative evaluation of Particle Swarm Optimization Algorithms for Data Clustering using real world data sets. International Journal of Computer Science and Network Security 8(1), 203–212 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karthi, R., Rajendran, C., Rameshkumar, K. (2011). Neighborhood Search Assisted Particle Swarm Optimization (NPSO) Algorithm for Partitional Data Clustering Problems. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22720-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22720-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22719-6

  • Online ISBN: 978-3-642-22720-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics