[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Undecimated Wavelet Packet for Blind Speech Separation Using Independent Component Analysis

  • Conference paper
Advances in Computing and Communications (ACC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 193))

Included in the following conference series:

Abstract

This paper addresses the problem of multi-channel blind speech separation in the instantaneous mixture case. We propose a new blind speech separation system which combines independent component analysis approach and the undecimated wavelet packet decomposition. The idea behind employing undecimated wavelet as a preprocessing step is to improve the non-Gaussianity distribution of independent components which is a pre-requirement for ICA and to increase their independency. The two observed signals are transformed using undecimated wavelet and Shannon entropy criterion into an adequate representation and perform then a preliminary separation. Finally, the separation task is done in time domain. Obtained results show that the proposed method gives a considerable improvement when compared with FastICA and other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comon, P.: Independent component analysis: A new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  2. Bell, A.J., Sejnowski, T.J.: An information maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1004–1034 (1995)

    Article  Google Scholar 

  3. Cardoso, J.F.: Infomax and maximum likelihood for blind separation. IEEE Signal Processing Letters 4, 112–114 (1997)

    Article  Google Scholar 

  4. Wang, F.S., Li, H.W., Li, R.: Novel NonGaussianity Measure Based BSS Algorithm for Dependent Signals. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 837–844. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Xiao, W., Jingjing, H., Shijiu, J., Antao, X., Weikui, W.: Blind separation of speech signals based on wavelet transform and independent component analysis. Transactions of Tianjin University 16(2), 123–128 (2010)

    Article  Google Scholar 

  6. Hyvärine, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  7. Fowler, J.: The redundant discrete wavelet transform and additive noise. IEEE Signal Processing Letters 12(9), 629–632 (2005)

    Article  Google Scholar 

  8. Shensa, M.: The discrete wavelet transform: Wedding the à trous and Mallat algorithms. IEEE Trans. Signal Processing 40(10), 2464–2482 (1992)

    Article  MATH  Google Scholar 

  9. Tasmaz, H., Ercelebi, E.: Speech enhancement based on undecimated wavelet packet-perceptual filterbanks and MMSE-STSA estimation in various noise environments. Digital Signal Processing 18(5), 797–812 (2008)

    Article  Google Scholar 

  10. Cardoso, J.F.: Higher-order contrasts for independent component analysis. Neural Computation 11, 157–192 (1999)

    Article  Google Scholar 

  11. Vincent, E., Gribonval, R., Fevotte, C.: Performance Measurement in Blind Audio Source Separation. IEEE Transactions on Audio, Speech, and Language Processing 14(4), 1462–1469 (2006)

    Article  Google Scholar 

  12. Chien, J.T., Chen, B.C.: A New Independent Component Analysis for Speech Recognition and Separation. IEEE Transactions on Audio, Speech and Language Processing 14(4), 1245–1254 (2006)

    Google Scholar 

  13. Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using second order statistics. IEEE Trans. Signal Processing 45, 434–444 (1997)

    Article  Google Scholar 

  14. Gargour, C., Abrea, M., Ramachandran, V., Lina, J.M.: A short introduction to wavelets and their applications. IEEE Circuits and Systems Magazine 9(2), 57–58 (2009)

    Article  Google Scholar 

  15. Coifman, R., Wickerhausser, M.: Entropy-based algorithms for best-basis selection. IEEE Transactions on Information Theory 38, 713–718 (1992)

    Article  MATH  Google Scholar 

  16. ITU-T P.862, Perceptual evaluation of speech quality (PESQ), an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs. International Telecommunication Union, Geneva (2001)

    Google Scholar 

  17. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience, New York (2001)

    Book  Google Scholar 

  18. Wang, L., Brown, G.J.: Computational Auditory Scene Analysis: Principles, Algorithms, and Applications. Wiley/IEEE Press, Hoboken, NJ (2006)

    Book  Google Scholar 

  19. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice-Hall, Englewood Cliffs (2008)

    Google Scholar 

  20. Cichocki, A., Amari, S.: Adaptive Blind Signal and Adaptive Blind Signal and Image Processing. John Wiley and Sons, New York (2002)

    Book  Google Scholar 

  21. Mallat: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, London (2008)

    MATH  Google Scholar 

  22. Moussaoui, R., Rouat, J., Lefebvre, R.: Wavelet Based Independent Component Analysis for Multi-Channel Source Separation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 645–648 (2006)

    Google Scholar 

  23. Usman, K., Juzoji, H., Nakajima, I., Sadiq, M.A.: A study of increasing the speed of the independent component analysis (lCA) using wavelet technique. In: Proc. International Workshop on Enterprise Networking and Computing in Healthcare Industry, pp. 73–75 (2004)

    Google Scholar 

  24. Tanaka, T., Cichocki, A.: Subband decomposition independent component analysis and new performance criteria. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 541–544 (2004)

    Google Scholar 

  25. Mirarab, M.R., Sobhani, M.A., Nasiri, A.A.: A New Wavelet Based Blind Audio Source Separation Using Kurtosis. In: International Conference on Advanced Computer Theory and Engineering (2010)

    Google Scholar 

  26. Walden, A.T., Contreras, C.: The phase-corrected undecimated discrete wavelet packet transform and its application to interpreting the timing of events. Proceedings of the Royal Society of London, 2243–2266 (1998)

    Google Scholar 

  27. Chien, J.T., Hsieh, H.L., Furui, S.: A new mutual information measure for independent component alalysis. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1817–1820 (2008)

    Google Scholar 

  28. Fisher, W., Dodington, G., Goudie-Marshall, K.: The TIMIT-DARPA speech recognition research database: Specification and status. In: DARPA Workshop on Speech Recognition (1986)

    Google Scholar 

  29. Zhang, W., Rao, B.D.: Combining Independent Component Analysis with Geometric Information and its Application to Speech Processing. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2009)

    Google Scholar 

  30. Fevotte, C., Gribonval, R., Vincent, E.: BSS EVAL toolbox user guide, IRISA, Rennes, France, Technical Report 1706 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Missaoui, I., Lachiri, Z. (2011). Undecimated Wavelet Packet for Blind Speech Separation Using Independent Component Analysis. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22726-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22726-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22725-7

  • Online ISBN: 978-3-642-22726-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics