[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Full Reversal Routing as a Linear Dynamical System

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6796))

Abstract

Link reversal is a versatile algorithm design paradigm, originally proposed by Gafni and Bertsekas in 1981 for routing, and subsequently applied to other problems including mutual exclusion and resource allocation. Although these algorithms are well-known, until now there have been only preliminary results on time complexity, even for the simplest link reversal scheme for routing, called Full Reversal (FR). In this paper we tackle this open question for arbitrary communication graphs. Our central technical insight is to describe the behavior of FR as a dynamical system, and to observe that this system is linear in the min-plus algebra. From this characterization, we derive the first exact formula for the time complexity: Given any node in any (acyclic) graph, we present an exact formula for the time complexity of that node, in terms of some simple properties of the graph. These results for FR are instrumental in analyzing a broader class of link reversal routing algorithms, as we show in a companion paper that such algorithms can be reduced to FR. In the current paper, we further demonstrate the utility of our formulas by using them to show the previously unknown fact that FR is time-efficient when executed on trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gafni, E., Bertsekas, D.P.: Distributed algorithms for generating loop-free routes in networks with frequently changing topology. IEEE Transactions on Communications 29, 11–18 (1981)

    Article  MathSciNet  Google Scholar 

  2. Chandy, K.M., Misra, J.: The drinking philosopher’s problem. ACM Transactions on Programming Languages and Systems 6(4), 632–646 (1984)

    Article  Google Scholar 

  3. Barbosa, V.C., Gafni, E.: Concurrency in heavily loaded neighborhood-constrained systems. ACM Trans. Program. Lang. Syst. 11(4), 562–584 (1989)

    Article  Google Scholar 

  4. Malka, Y., Moran, S., Zaks, S.: A lower bound on the period length of a distributed scheduler. Algorithmica 10(5), 383–398 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Tirthapura, S., Herlihy, M.: Self-stabilizing distributed queuing. IEEE Transactions on Parallel and Distributed Systems 17(7), 646–655 (2006)

    Article  MATH  Google Scholar 

  6. Attiya, H., Gramoli, V., Milani, A.: A provably starvation-free distributed directory protocol. In: 12th International Symposium on Stabilization, Safety, and Security of Distributed Systems, pp. 405–419 (2010)

    Google Scholar 

  7. Park, V.D., Corson, M.S.: A highly adaptive distributed routing algorithm for mobile wireless networks. In: 16th Conference on Computer Communications (Infocom), apr 1997, pp. 1405–1413 (1997)

    Google Scholar 

  8. Ko, Y.-B., Vaidya, N.H.: Geotora: a protocol for geocasting in mobile ad hoc networks. In: Proceedings of the 2000 International Conference on Network Protocols, ICNP 2000, pp. 240–250 (2000)

    Google Scholar 

  9. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Transactions on Computer Systems 7(1), 61–77 (1989)

    Article  MathSciNet  Google Scholar 

  10. Naimi, M., Trehel, M., Arnold, A.: A log(n) distributed mutual exclusion algorithm based on path reversal. Journal on Parallel and Distributed Computing 34(1), 1–13 (1996)

    Article  Google Scholar 

  11. Walter, J.E., Welch, J.L., Vaidya, N.H.: A mutual exclusion algorithm for ad hoc mobile networks. Wireless Networks 7(6), 585–600 (2001)

    Article  MATH  Google Scholar 

  12. L., J., Malpani, N.V.N., Welch: Leader election algorithms for mobile ad hoc networks. In: Proceedings of the 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communication (2000)

    Google Scholar 

  13. Derhab, A., Badache, N.: A self-stabilizing leader election algorithm in highly dynamic ad hoc mobile networks. IEEE Trans. Parallel Distrib. Syst. 19(7), 926–939 (2008)

    Article  MATH  Google Scholar 

  14. Ingram, R., Shields, P., Walter, J.E., Welch, J.L.: An asynchronous leader election algorithm for dynamic networks. In: Proceedings of the IEEE International Parallel & Distributed Processing Symposium, pp. 1–12 (2009)

    Google Scholar 

  15. Busch, C., Surapaneni, S., Tirthapura, S.: Analysis of link reversal routing algorithms for mobile ad hoc networks. In: Proceedings of the 15th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 210–219 (2003)

    Google Scholar 

  16. Busch, C., Tirthapura, S.: Analysis of link reversal routing algorithms. SIAM Journal on Computing 35(2), 305–326 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Charron-Bost, B., Gaillard, A., Welch, J.L., Widder, J.: Routing without ordering. In: Proceedings of the 21st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 145–153 (2009)

    Google Scholar 

  18. Charron-Bost, B., Welch, J.L., Widder, J.: Link reversal: How to play better to work less. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 88–101. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Charron-Bost, B., Függer, M., Welch, J.L., Widder, J.: Partial is full. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 111–123. Springer, Heidelberg (2011)

    Google Scholar 

  20. Charron-Bost, B., Függer, M., Welch, J.L., Widder, J.: Full reversal routing as a linear dynamical system. Research Report 7/2011, Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-2, 1040 Vienna, Austria (2011)

    Google Scholar 

  21. Heidergott, B., Olsder, G.J., von der Woude, J.: Max plus at work. Princeton Univ. Press, Princeton (2006)

    Google Scholar 

  22. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity. John Wiley & Sons, Chichester (1993)

    MATH  Google Scholar 

  23. Malka, Y., Rajsbaum, S.: Analysis of distributed algorithms based on recurrence relations (preliminary version). In: Toueg, S., Kirousis, L.M., Spirakis, P.G. (eds.) WDAG 1991. LNCS, vol. 579, pp. 242–253. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charron-Bost, B., Függer, M., Welch, J.L., Widder, J. (2011). Full Reversal Routing as a Linear Dynamical System. In: Kosowski, A., Yamashita, M. (eds) Structural Information and Communication Complexity. SIROCCO 2011. Lecture Notes in Computer Science, vol 6796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22212-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22212-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22211-5

  • Online ISBN: 978-3-642-22212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics