Abstract
Keratoconus identification has become a step of primary importance in the preoperative evaluation for the refractive surgery. With the ophthalmology knowledge improvement, corneal physical parameters were considered important to its evaluation. The Ocular Response Analyzer (ORA) provides some physical parameters using an applanation process to measure cornea biomechanical properties. This paper presents a study of machine learning classifiers in keratoconus diagnosis from ORA examinations. As a first use of machine learning approach with ORA parameters, this research work presents a performance comparison of the main machine learning algorithms. This approach improves ORA parameters’ analysis helping ophthalmologist’s efficiency in clinical diagnosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belin, M.W., Krachmer, J.H., Feder, R.S.: Keratoconus and related noninflammatory corneal thinning disorders. Survey of Ophthalmology 28, 293–322 (1984)
Santodomingo-Rubido, J., Romero-Jimenez, M.: J.S. Wolffsohn. Keratoconus: A review. Contact Lens & Anterior Eye 23, 157–166 (2010)
Jardim, D., Fontes, B.M., Ambrosio Jr., R., et al.: Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology, 673–679 (2010)
Luce, D.A.: Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. Journal of Cataract and Refractive Surgery 31, 156–162 (2006)
Choi, J.S., Oh, J.Y., Kim, M.K., Lee, J.H., Shin, J.Y., Wee, W.R.: Evaluation of corneal biomechanical properties following penetrating keratoplasty using the ocular response analyzer. Korean Journal of Ophthalmology 24, 139–142 (2010)
Souza, M.B., Medeiros, F.W., Souza, D.B., Garcia, R., Alves, M.R.: Evaluation of machine learning classifiers in keratoconus detection from orbscan ii examinations. Clinics 65, 1223–1228 (2010)
Smolek, M.K., Thompson, H., Maeda, N., Klyce, S.: Automated keratoconus screening with corneal topography analysis. Invest. Ophthalmol. Vis. Sci. 35(6), 2749–2757 (1994)
Pensiero, S., Accardo, P.: Neural network-based system for early keratoconus detection from corneal topography. J. Biomed. Inform. 35(3), 151–159 (2002)
Smolek, M.K., Klyce, S.D., Karon, M.D.: Screening patients with the corneal navigator. Journal Refractive Surgery 21(5 Suppl), 617–622 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Machado, A.P. et al. (2011). Comparing Machine-Learning Classifiers in Keratoconus Diagnosis from ORA Examinations. In: Peleg, M., Lavrač, N., Combi, C. (eds) Artificial Intelligence in Medicine. AIME 2011. Lecture Notes in Computer Science(), vol 6747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22218-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-22218-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22217-7
Online ISBN: 978-3-642-22218-4
eBook Packages: Computer ScienceComputer Science (R0)