[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparing Machine-Learning Classifiers in Keratoconus Diagnosis from ORA Examinations

  • Conference paper
Artificial Intelligence in Medicine (AIME 2011)

Abstract

Keratoconus identification has become a step of primary importance in the preoperative evaluation for the refractive surgery. With the ophthalmology knowledge improvement, corneal physical parameters were considered important to its evaluation. The Ocular Response Analyzer (ORA) provides some physical parameters using an applanation process to measure cornea biomechanical properties. This paper presents a study of machine learning classifiers in keratoconus diagnosis from ORA examinations. As a first use of machine learning approach with ORA parameters, this research work presents a performance comparison of the main machine learning algorithms. This approach improves ORA parameters’ analysis helping ophthalmologist’s efficiency in clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belin, M.W., Krachmer, J.H., Feder, R.S.: Keratoconus and related noninflammatory corneal thinning disorders. Survey of Ophthalmology 28, 293–322 (1984)

    Article  Google Scholar 

  2. Santodomingo-Rubido, J., Romero-Jimenez, M.: J.S. Wolffsohn. Keratoconus: A review. Contact Lens & Anterior Eye 23, 157–166 (2010)

    Google Scholar 

  3. Jardim, D., Fontes, B.M., Ambrosio Jr., R., et al.: Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology, 673–679 (2010)

    Google Scholar 

  4. Luce, D.A.: Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. Journal of Cataract and Refractive Surgery 31, 156–162 (2006)

    Article  Google Scholar 

  5. Choi, J.S., Oh, J.Y., Kim, M.K., Lee, J.H., Shin, J.Y., Wee, W.R.: Evaluation of corneal biomechanical properties following penetrating keratoplasty using the ocular response analyzer. Korean Journal of Ophthalmology 24, 139–142 (2010)

    Article  Google Scholar 

  6. Souza, M.B., Medeiros, F.W., Souza, D.B., Garcia, R., Alves, M.R.: Evaluation of machine learning classifiers in keratoconus detection from orbscan ii examinations. Clinics 65, 1223–1228 (2010)

    Article  Google Scholar 

  7. Smolek, M.K., Thompson, H., Maeda, N., Klyce, S.: Automated keratoconus screening with corneal topography analysis. Invest. Ophthalmol. Vis. Sci. 35(6), 2749–2757 (1994)

    Google Scholar 

  8. Pensiero, S., Accardo, P.: Neural network-based system for early keratoconus detection from corneal topography. J. Biomed. Inform. 35(3), 151–159 (2002)

    Article  Google Scholar 

  9. Smolek, M.K., Klyce, S.D., Karon, M.D.: Screening patients with the corneal navigator. Journal Refractive Surgery 21(5 Suppl), 617–622 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Machado, A.P. et al. (2011). Comparing Machine-Learning Classifiers in Keratoconus Diagnosis from ORA Examinations. In: Peleg, M., Lavrač, N., Combi, C. (eds) Artificial Intelligence in Medicine. AIME 2011. Lecture Notes in Computer Science(), vol 6747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22218-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22218-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22217-7

  • Online ISBN: 978-3-642-22218-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics