[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Generalized Information Theory Based on the Theory of Hints

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6717))

  • 898 Accesses

Abstract

The aggregate uncertainty is the only known functional for Dempster-Shafer theory that generalizes the Shannon and Hartley measures and satisfies all classical requirements for uncertainty measures, including subadditivity. Although being posed several times in the literature, it is still an open problem whether the aggregate uncertainty is unique under these properties. This paper derives an uncertainty measure based on the theory of hints and shows its equivalence to the pignistic entropy. It does not satisfy subadditivity, but the viewpoint of hints uncovers a weaker version of subadditivity. On the other hand, the pignistic entropy has some crucial advantages over the aggregate uncertainty. i.e. explicitness of the formula and sensitivity to changes in evidence. We observe that neither of the two measures captures the full uncertainty of hints and propose an extension of the pignistic entropy called hints entropy that satisfies all axiomatic requirements, including subadditivity, while preserving the above advantages over the aggregate uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chau, C., Lingras, P., Wong, S.: Upper and lower entropies of belief functions using compatible probability functions. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 306–315. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  2. Dempster, A.P.: A generalization of bayesian inference. J. Royal Stat. Soc. B 30, 205–247 (1968)

    MathSciNet  MATH  Google Scholar 

  3. Dubois, D., Prade, H.: A note on measures of specificity for fuzzy sets. Int. J. Gen. Systems 10(4), 279–283 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Harmanec, D.: Toward a characterization of uncertainty measure for the dempster-shafer theory. In: UAI 1995: Proc. of the 11th Conference Annual Conference on Uncertainty in Artificial Intelligence, pp. 255–261 (1995)

    Google Scholar 

  5. Harmanec, D.: Measure of uncertainty and information. In: Imprecise Probability Project (1999)

    Google Scholar 

  6. Harmanec, D., Klir, G.: Measuring total uncertainty in dempster-shafer theory: a novel approach. Int. J. Gen. Systems 22(4), 405–419 (1994)

    Article  MATH  Google Scholar 

  7. Harmanec, D., Resconi, G., Klir, G.J., Pan, Y.: On the computation of uncertainty measure in the dempster-shafer theory. Int. J. Gen. Systems 25(2), 153 (1996)

    Article  MATH  Google Scholar 

  8. Higashi, M., Klir, G.J.: Measures of uncertainty and information based on possibility distributions. Int. J. Gen. Systems 9(1), 43–58 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jousselme, A.-L., Liu, C., Grenier, D., Bossé, E.: Measuring ambiguity in the evidence theory. IEEE Trans. on Systems, Man, and Cybernetics, Part A 36(5), 890–903 (2006)

    Article  Google Scholar 

  10. Klir, G.J.: Uncertainty and Information: Foundations of Generalized Information Theory. John Wiley & Sons, Inc., Binghamton University (2005)

    Google Scholar 

  11. Klir, G.J., Lewis, H.W.: Remarks on ”measuring ambiguity in the evidence theory”. IEEE Trans. on Systems, Man, and Cybernetics, Part A 38(4), 995–999 (2008)

    Article  Google Scholar 

  12. Kohlas, J.: Information Algebras: Generic Structures for Inference. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  13. Kohlas, J., Monney, P.-A.: A Mathematical Theory of Hints. An Approach to the Dempster-Shafer Theory of Evidence. LNEMS. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  14. Kohlas, J., Monney, P.-A.: Statistical Information. Assumption-Based Statistical Inference. Sigma Series in Stochastics, vol. 3. Heldermann (2008)

    Google Scholar 

  15. Maeda, Y., Ichihashi, H.: An uncertainty with monotonicity under the random set inclusion. Int. J. Gen. Systems 21(4), 379 (1993)

    Article  MATH  Google Scholar 

  16. Monney, P.-A.: A Mathematical Theory of Arguments for Statistical Evidence. Contributions to Statistics. Physica-Verlag, Heidelberg (2003)

    Book  MATH  Google Scholar 

  17. Pouly, M., Kohlas, J.: Generic Inference - A Unifying Theory for Automated Reasoning. John Wiley & Sons, Inc., Chichester (2011)

    Book  MATH  Google Scholar 

  18. Schneuwly, C.: Information - eine diskussion. Term Paper, University of Fribourg (1999)

    Google Scholar 

  19. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  20. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smith, R.: Generalized Information Theory: Resolving some old Questions and opening some new ones. PhD thesis, University of Binghamton (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pouly, M. (2011). Generalized Information Theory Based on the Theory of Hints. In: Liu, W. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2011. Lecture Notes in Computer Science(), vol 6717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22152-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22152-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22151-4

  • Online ISBN: 978-3-642-22152-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics