Abstract
Probabilistic guidance based on learned knowledge is added to the connection tableau calculus and implemented on top of the lean-CoP theorem prover, linking it to an external advisor system. In the typical mathematical setting of solving many problems in a large complex theory, learning from successful solutions is then used for guiding theorem proving attempts in the spirit of the MaLARea system. While in MaLA Rea learning-based axiom selection is done outside unmodified theorem provers, in MaLeCoP the learning-based selection is done inside the prover, and the interaction between learning of knowledge and its application can be much finer. This brings interesting possibilities for further construction and training of self-learning AI mathematical experts on large mathematical libraries, some of which are discussed. The initial implementation is evaluated on the MPTP Challenge large theory benchmark.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armando, A., Baumgartner, P., Dowek, G. (eds.): IJCAR 2008. LNCS (LNAI), vol. 5195. Springer, Heidelberg (2008)
Carlson, A., Cumby, C., Rosen, J., Roth, D.: SNoW User’s Guide. Technical Report UIUC-DCS-R-99-210, University of Illinois at Urbana-Champaign (1999)
Denzinger, J., Fuchs, M., Goller, C., Schulz, S.: Learning from Previous Proof Experience. Technical Report AR99-4, Institut für Informatik, Technische Universität München (1999)
Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: CADE 11 (2011) (To appear)
Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reasoning 40(1), 35–60 (2008)
Otten, J., Bibel, W.: leanCoP: Lean Connection-Based Theorem Proving. Journal of Symbolic Computation 36(1-2), 139–161 (2003)
Otten, J.: leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem proving in classical and intuitionistic logic (system descriptions). In: Armando, A., et al. (eds.) [1], pp. 283–291
Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2-3), 159–182 (2010)
Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR 2006. CEUR, vol. 192, pp. 18–33 (2006)
Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)
Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126 (2002)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Suda, M., Sutcliffe, G., Wischnewski, P., Lamotte-Schubert, M., de Melo, G.: External Sources of Axioms in Automated Theorem Proving. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 281–288. Springer, Heidelberg (2009)
Tsivtsivadze, E., Urban, J., Geuvers, H., Heskes, T.: Semantic graph kernels for automated reasoning. In: SDM 2011 (to appear, 2011)
Urban, J.: MoMM - fast interreduction and retrieval in large libraries of formalized mathematics. International Journal on Artificial Intelligence Tools 15(1), 109–130 (2006)
Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning 37(1-2), 21–43 (2006)
Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the Mizar Mathematical Library. In: ICMS, pp. 155–166 (2010)
Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1- machine learner for automated reasoning with semantic guidance. In: Armando, et al. (eds.) [1], pp. 441–456
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Urban, J., Vyskočil, J., Štěpánek, P. (2011). MaLeCoP Machine Learning Connection Prover. In: Brünnler, K., Metcalfe, G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2011. Lecture Notes in Computer Science(), vol 6793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22119-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-22119-4_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22118-7
Online ISBN: 978-3-642-22119-4
eBook Packages: Computer ScienceComputer Science (R0)