[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Cluster-based Instance Selection Algorithm

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6682))

Abstract

The main contribution of the paper is proposing and evaluating, through the computational experiment, an agent-based population learning algorithm generating a representative training dataset of the required size. The proposed approach is based on the assumption that prototypes are selected from clusters. Thus, the number of clusters produced has a direct influence on the size of the reduced dataset. Agents within an A-Team execute various local search procedures and cooperate to find-out a solution to the instance reduction problem aiming at obtaining a compact representation of the dataset. Computational experiment has confirmed that the proposed algorithm is competitive to other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. School of Information and Computer Science. University of California, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  2. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: e-JABAT - An Implementation of the Web-Based A-Team. In: Nguyen, N.T., Jain, I.C. (eds.) Intelligent Agents in the Evolution of Web and Applications. SCI, vol. 167, pp. 57–86. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE. A White Paper. Exp. 3(3), 6–20 (2003)

    Google Scholar 

  4. Czarnowski, I., Jędrzejowicz, P.: An Approach to Data Reduction and Integrated Machine Classification. New Generation Computing 28(1), 21–40 (2010)

    Article  MATH  Google Scholar 

  5. Czarnowski, I., Jędrzejowicz, P.: An Approach to Instance Reduction in Supervised Learning. In: Coenen, F., Preece, A., Macintosh, A. (eds.) Research and Development in Intelligent Systems XX, pp. 267–282. Springer, London (2004)

    Chapter  Google Scholar 

  6. Czarnowski, I., Jędrzejowicz, P.: Cluster Integration for the Cluster-Based Instance Selection. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS, vol. 6421, pp. 353–362. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Datasets used for classification: comparison of results. directory of data sets, http://www.is.umk.pl/projects/datasets.html (accessed September 1, 2009)

  8. Hamo, Y., Markovitch, S.: The COMPSET Algorithm for Subset Selection. In: Proceedings of The Nineteenth International Joint Conference for Artificial Intelligence, Edinburgh, Scotland, pp. 728–733 (2005)

    Google Scholar 

  9. Jędrzejowicz, J., Jędrzejowicz, P.: Cellular GEP-Induced Classifiers. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS, vol. 6421, pp. 343–352. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Jędrzejowicz, P.: Social Learning Algorithm as a Tool for Solving Some Difficult Scheduling Problems. Foundation of Computing and Decision Sciences 24, 51–66 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Kim, S.-W., Oommen, B.J.: A Brief Taxonomy and Ranking of Creative Prototype Reduction Schemes. Pattern Analysis Application 6, 232–244 (2003)

    Article  MathSciNet  Google Scholar 

  12. Klusch, M., Lodi, S., Moro, G.: Agent-Based Distributed Data Mining: The KDEC Scheme. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelligent Information Agents. LNCS (LNAI), vol. 2586, pp. 104–122. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Krishnaswamy, S., Zaslavsky, A., Loke, S.W.: Techniques for Estimating the Computation and Communication Costs of Distributed Data Mining. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2329, pp. 603–612. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, SanMateo (1993)

    Google Scholar 

  15. Silva, J., Giannella, C., Bhargava, R., Kargupta, H., Klusch, M.: Distributed Data Mining and Agents. Engineering Applications of Artificial Intelligence Journal 18, 791–807 (2005)

    Article  Google Scholar 

  16. Talukdar, S., Baerentzen, L., Gove, A., de Souza, P.: Asynchronous Teams: Co-operation Schemes for Autonomous, Computer-Based Agents. Technical Report EDRC 18-59-96, Carnegie Mellon University, Pittsburgh (1996)

    Google Scholar 

  17. Uno, T.: Multi-sorting Algorithm for Finding Pairs of Similar Short Substrings from Large-scale String Data. Knowledge and Information Systems (2009); doi: 10.1007/s10115-009-0271-6

    Google Scholar 

  18. Vucetic, S., Obradovic, Z.: Performance Controlled Data Reduction for Knowledge Discovery in Distributed Databases. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 29-39 (2000)

    Google Scholar 

  19. Wilson, D.R., Martinez, T.R.: Reduction Techniques for Instance-based Learning Algorithm. Machine Learning 33(3), 257–286 (2000)

    Article  MATH  Google Scholar 

  20. Yu, K., Xiaowei, X., Ester, M., Kriegel, H.-P.: Feature Weighting and Instance Selection for Collaborative Filtering: An Information-Theoretic Approach. Knowledge and Information Systems 5(2), 201–224 (2004)

    Article  Google Scholar 

  21. Zhu, X., Wu, X.: Scalable Representative Instance Selection and Ranking. In: IEEE Proceedings of the 18th International Conference on Pattern Recognition, vol. 3, pp. 352–355 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czarnowski, I., Jędrzejowicz, P. (2011). A New Cluster-based Instance Selection Algorithm. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2011. Lecture Notes in Computer Science(), vol 6682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22000-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22000-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21999-3

  • Online ISBN: 978-3-642-22000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics